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a b s t r a c t

In order to fulfill the requirements like stringent timing restraints and demand on resources, Cyber–
Physical System (CPS) must deploy on the virtualized environment such as cloud computing. To protect
Virtual Machines (VMs) in which CPSs are functioning against malware-based attacks, malware detection
andmitigation technique is emerging as a highly crucial concern. The traditional VM-based anti-malware
software themselves a potential target for malware-based attack since they are easily subverted by
sophisticatedmalware. Thus, a reliable and robustmalwaremonitoring and detection systems are needed
to detect and mitigate rapidly the malware based cyber-attacks in real time particularly for virtualized
environment. The Virtual Machine Introspection (VMI) has emerged as a fine-grained out-of-VM security
solution to detect malware by introspecting and reconstructing the volatile memory state of the live
guest Operating System (OS) by functioning at the Virtual Machine Monitor (VMM) or hypervisor.
However, the reconstructed semantic details by the VMI are available in a combination of benign and
malicious states at the hypervisor. In order to distinguish between these two states, extensive manual
analysis is required by the existing out-of-VM security solutions. To address the foremost issue, in this
paper, we propose an advanced VMM-based guest-assisted Automated Multilevel Malware Detection
System (AMMDS) that leverages both VMI and Memory Forensic Analysis (MFA) techniques to predict
early symptoms of malware execution by detecting stealthy hidden processes on a live guest OS. More
specifically, the AMMDS system detects and classifies the actual running malicious executables from the
semantically reconstructed process view of the guest OS. The two sub-components of the AMMDS are:
OnlineMalware Detector (OMD) andOfflineMalware Classifier (OFMC). The OMD recognizeswhether the
running processes are benign or malicious using its Local Malware Signature Database (LMSD) and online
malware scanner and the OFMC classify unknown malware by adopting machine learning techniques
at the hypervisor. The AMMDS has been evaluated by executing large real-world malware and benign
executables on to the live guest OSs. The evaluation results achieved 100% of accuracy and zero False
Positive Rate (FPR) on the 10-fold cross-validation in classifying unknown malware with maximum
performance overhead of 5.8%.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rapid improvement in technology of sensor devices, computing
and communication devices and high-speed transmission media
etc., are supporting the development of CPS. The CPS has evolved
as a most crucial infrastructure that integrates devices like com-
putation, networking, and physical elements together to facilitate
and communicate various applications [1]. Primary goals of the
CPS is to enable intelligent monitoring as well as controlling of the
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various applications running on the computing devices. In other
words, CPS main objective is to assist quick extraction of informa-
tion, analysis of the data, decision making and data transmission
in real time. The CPS has been widely adopted in various fields like
robotics, health care, military, industrial control, power systems,
avionics systems, intelligent building, smart electrical power grids,
smart medical systems, etc., [2].

The central processing core of the CPS receives a massive
amount of data fromvarious cyber-enabled devices aswell as other
physical devices through communication networks. For example,
in a smart and reliable transportation system, a vehicle equipped
with the sensor device sends data to the roadside unit deployed
on the roads which in turn transmits the received data to central
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processing core of the CPS over a high-speed network. Since a large
number of devices sends the data, inbound traffic at the central
processing core of the CPS is massive. Generally, CPSs are real-
time systems, thus, the significance of computational latency of
their critical components are as same as their correctness of their
functional modules. In order to mitigate loss the caused due to the
violation of the real-time property of a perilous function, the best
solution is to deploy central processing core of the CPS in the cloud
computing (virtualization) environment. Themain aim of develop-
ment of the cloud computing is to offer fast computational speed.
Moreover, the cloud computing can offer a vast pool of resources
to store, process, and analyze the data, which creates precise data
information. Elasticity property of the cloud computing offers ade-
quate amount resources to central processing core of the CPS as and
when the demand arises [3]. The virtualization enables a number
of benefits such as reduced operation andmaintenance cost aswell
as setup cost, easy the procurement process, more importantly,
dependability and availability.

Much of the works have been done in the context of hardware
virtualization and fault-tolerance on virtualization [4,5]. Recent
work [6] provides the aspects of integration and consolidation of
CPS with virtualization. Since central processing core of the CPS
frequently communicates with the other systems in the physical
world through communication media, malware can be used as a
weapon by an attacker or malignant user who intentionally desire
to create havoc [7].

Malware is a malicious program developed with an intention
to launch malignant tasks. Generally, malware uses the stealthy
technique to exploit the system and network vulnerabilities in
order to gain control of the user system to achieve unauthorized
activities [7]. Its prime target is not only restricted to destroy the
single system or group of systems, it also targets to disrupt the
normal functions of the computer networks [8]. This results in
increasing threat to the information systems that are used in day
to day activities. Malware not only makes use of zero-day exploits
to acquire the control of vulnerable machine but also Stealthily
achieve its intended job by hiding in an infected system and cause
contaminations over time. The proliferation of new variants or
a particular class of malware constantly uses code obfuscation
technique [9] or rootkit functionality [10] to subvert most of the
existing in-host security solutions to gain access to the targeted
machine.

The virtualized environment can also be targeted by an attacker
due to the reason that VMs can easy to avail through the cloud
service provider [11]. With an intention of destroying the entire
virtualized platform, an attacker or malignant user may use the
rented virtual machine to launch malware based attacks or cyber-
attacks. To mitigate such kinds of attacks quickly and efficiently in
a timely manner, a real-time powerful tamper resistant malware
detection system is highly essential.

To tackle this issue, VMI [12] has emerged as a promising out-
of-VM security solution that operates at the VMM and facilitates in
constructing a semantic view of the live guest OS in real-time by
introspecting low-level details of the volatile memory state of the
introspected guest OSwithout the consent of one beingmonitored.
In addition, it allows to view and acquire running process details,
system calls invoked by the process, kernel modules etc., of the
Monitored VM. However, obtaining meaningful run state details
such as network connections, the system call details, process list,
andmodule list, etc., from the primarymemory of the introspected
guest OS is a biggest challenging task for the VMI and it is named
as the semantic gap [13,14]. To fill this semantic gap issue, various
researchworks have been proposed over the last few years by con-
sidering a number of different constraints of the guest OS [15,16].

Other significant challenges in precisely detecting themalicious
executables, mainly in a virtualized environment are:

• In order to provide real-time protection for CPS which is
operating within the guest OS in a virtualized cloud en-
vironment, the traditional VM-based security solution are
inadequate to protect guest OS resources against the sophis-
ticated malware. Therefore, VMI techniques provide out-of-
VM security solution for the introspected guest OS while
operating at VMM. However, introspected information (e.g.,
processes) was available in dubious forms.1 For example,
the proliferation of the Kelihos malware on the guest OS
spawned a number of malicious child processes before ex-
iting from the main process [17]. In such an instance, man-
ually distinguishing, detecting, and preventing the running
malicious processes from hundreds of benign processes was
time-consuming for a security administrator, as it required
a wide knowledge of the malicious executables.
• The CPS functioning on the virtualized environment (e.g.,

guest OS) are targeted bymalicious executables use the code
obfuscation technique [18,19] and other stealthy malware
attacks [20]. Hence, performing early symptoms of malware
execution and accurately estimating the stealthy hidden,
dead and dubious malicious processes under the dynamic
nature of the process creation and expires on introspected
live guest OS is challenging task.

To address the aforementioned challenges, we propose an in-
telligent and guest-assisted AMMDS that leverages both the VMI
and MFA techniques to perform three levels of the investigation to
secure the critical infrastructure of the virtualized cloud environ-
ment. As a first level of investigation, it performs introspection and
precisely detects the semantic view of the hidden and malicious
process to estimate the perfect infection state of the live intro-
spected guest OS. It seizes the execution state of the introspected
guest OS by capturing the memory dump of the monitored guest
OS soon after it identifies the unusual behavior and then instantly
reconstructs and extracts executables from the acquired memory
dump to carry out next level of investigations. As a second level of
investigation, the OMD component of the AMMDS examines the
extracted executables to ascertain the malicious one. The OFMC
component of AMMDS analyzes the extracted executables in order
to identify unknown or zero-day malware using machine learning
techniques as the third level of the investigation. The AMMDS is
evaluated by using real malware datasets on the virtualized envi-
ronment established using Xen hypervisor. Our empirical results
show that AMMDS is robust in detecting and classifying unknown
malware that can evade VM-based security solution, and it only
incurs acceptable moderate run-time overhead.

The key contributions of the present work are as follows:

1. We have designed, implemented, and evaluated a consis-
tent, real-time VMM-based guest-assisted AMMDS that pe-
riodically examines the state of the live guest OS system
while defending the CPS to detect the running malicious
processes from the forensically reconstructed executables.

2. We have implemented an Intelligent Cross-View Analyzer
(ICVA) as proof-of-concept and implanted it into the AM-
MDS to intelligently cross-examine the internally (VM-
level) and externally (VMM-level) gathered state informa-
tion to detect hidden, dead, and dubious processes and also
to predict the early symptoms of malware execution using
the novel Time Interval Threshold (TIT) technique.

3. OMD and OFMC are two prime sub-components of the
AMMDS. These are practically implemented and implanted
into AMMDS to distinguish an actual malware from se-
mantic view processes that are reconstructed as dubious

1 Dubious process is a process that is currently running on a guest OS, and it may
or may not be a malicious process (not hidden).
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executables at VMM. The OMD performs a malicious check
on hidden and dubious processes by cross-verifying with its
LMSD and online scanner. On the other hand, OFMC uses
the extracted features recommended by feature selection
techniques in the form of Final Feature Vector (FFV) to
perform malware analysis in offline.

4. To the best of our knowledge, our proposed AMMDS is the
first to adopt machine learning techniques from a VMI per-
spective at the VMM, and to perform runtime detection of
unknown malware from the introspected-cum-forensically
extracted executables of the introspected guest OS. This idea
opens the door for researchers to leverage other scientific
techniques at the VMM to perform automatic detection of
malware.

5. The robustness of the AMMDS was practically evaluated
by injecting large samples of real-world Windows malware
and rootkits on a live Windows guest OS. The OMD of the
AMMDS is powerful enough to distinguish between mali-
cious and benign executables. Similarly, the OFMC achieved
malware detection rate of 100%, and 0% FPR with maximum
performance overhead of 5.8%.

2. Background and related work

The related works specific to our proposed technique are out-
lined from a VMI, MFA, and machine learning perspective. The
VMI was pioneered by Garfinkel and Rosenblum by developing
a prototype called Liveware [12] for detection of an intrusion by
examining the low-level state of the guest OS from outside the
VM. Since then, numerous efforts have focused on the significant
adoption of the VMI for malware detection and analysis [21,20],
process monitoring [22], rootkit detection [23], etc.

Several out-of-VM security approaches have also proposed to
monitor and ensure the protection of the introspected system,
while addressing specific security problems of the guest OS. The
Antfarm [24] approach tracks and implicitly obtains the execu-
tion of the guest processes’ information, while functioning at the
VMM. However, the traced processes may sometimes be incorrect
or noisy. Lycosid [25] extended the Antfarm approach aimed to
detect and identify the hidden processes at the VMM based on the
obtained trusted and untrusted view of the guest OS processes.
However, the employed cross-view analysis technique [26] by the
Lycosid depends on manual analysis that is incapable of detecting
the disguised processes2 that appear due to the malware. The
VMwatcher [20] uses the guest view casting technique to exter-
nally reconstruct the internal semantics view of the guest OS,
while functioning at the VMM. It uses the view comparison-based
method to detect elusive malware based on the discrepancy ob-
tained between the internal and external views. However, the re-
sults still do not help in detecting particular variants of the stealthy
malware, which use code obfuscation technique [28]. Other VMI-
based solutions such as XenAccess [29] and Patagonix [30] ensure
the security of the introspected VM at the hypervisor by perform-
ing manual analysis of the reconstructed semantic view.

From another perspective, a number of VMM-based in-guest
monitor techniques [31,32] have also been explored to achieve
better robustness while leveraging the security advantages from
an out-of-VM security approach. Lare [33] pioneered the active
monitoring approach by placing a hook into an introspected sys-
temusing the VMM-protected address space. These hooks trap and

2 Disguised processes [27]: These processes may appear as legitimate ( eg,
svchost.exe) by attaching themselves to existing benign processes based on their
injected malicious code or by originating from a wrong directory path on the guest
OS.

analyze the events inside the guest OS and trigger the security
application of the trusted VM to take suitable action against the
attacks. The main limitation of this approach is its high overhead.
The processes-out-grafting [22] inserts the kernelmodules into the
guest OS to relocate the suspect processes from the introspected
VM on to a secure VM, whereby the parallel running VMI tools can
access the data structure of the guest OSwithout an intervention of
the untrusted introspectedVM.However, the proposed approach is
limited to out-graft a single process. The SYRINGE [34] uses a guest-
assisted function-call injection technique to implant a function
on to the introspected VM along with a localized shepherding
technique to confirm the execution of the invoked guest code on to
the guest OS. However, this approach does not ensure the integrity
of the data delivered by the infected guest OS that was tampered
by kernel-level attacks.

Meanwhile, leveraging the MFA with the VMI at the hypervisor
offers many advantages [35,36] such as examination of the rich
semantic view of the critical kernel data structure of all OS [37]
manipulated by operating system specific rootkit or malware.
More importantly, it significantly reduces the development of an
introspection program of a large kernel data structure by address-
ing the semantic gap problem [38]. As the forensic examination
begins with the captured live physical memory dump, a number
of host [39,40] and hardware assisted-virtualization [41,42] based
anti-forensic acquisition techniques evolve to perform memory
acquisition of the live VM. There have been efforts [43,44] to
perform live forensic analysis by leveraging virtualization exten-
sion on a potentially compromised system without modification
or termination of the guest OS state. However, digital forensic
involves extensive manual analysis to gather empirical evidence
of real malicious executables from the infected memory dump.

Machine learning perspective: Over the past decades, several
research works have witnessed the use of machine learning tech-
niques to detect unknownmalware executables. Schultz et al. [45]
pioneeredmachine learning for detection of malicious executables
by understanding the features of themalware and benign executa-
bles. Generally, there are two kinds of methods that can be utilized
to detect and classify malware, namely, static malware analysis
and dynamic malware analysis.

In static malware analysis, the detection of malware is per-
formed by examining the malicious executables without its ex-
ecution. The traditional malware detection and classification ap-
proaches use static properties of malicious executables that in-
clude header details, embedded strings details, packer signature,
checksum or MD5 hash, metadata etc. Zubair et al. [46] presented
a malware detection framework with the name PE-Miner that
has the potency to extract individual features from a Portable
Executables (PE) file to spot unknown or zero-daymalware in real-
time. The proposed approach is based on a three-fold research
methodology that consists of identifying structural features of the
PE file, reduction of feature by pre-processing and classifying based
on the data mining algorithms. The authors experimented with
large data samples and achieved detection rate greater than 99%
with less than 0.5% FPR.

A Hellal and LB Romdhane [47] proposed a graph mining al-
gorithm, called, minimal contrast frequent subgraph miner that
extracts malicious behavioral patterns from malware executables.
It based on the graph mining approach with static malware analy-
sis. The proposed method is evaluated by considering 1083 mal-
ware and 1000 benign Windows samples and achieved highest
detection rate with low FPR on detection of new variants malware
and obfuscated malware. Ahmadi et al. [48] proposed a malware
classification approach. The extraction of the featureswas based on
the structure and content of themalware samples asmulti-feature.
The authors used an ensemble based XGBoost learning algorithm
to validate their classification methodologies and achieved 98.80%
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detection accuracy on a large malware dataset. A number of
classic approaches use Bytecode N-gram [49–51] and Opcode N-
gram [52–54] based feature extraction techniques to detect and
classify malware using the static analysis method. However, the
main limitation of this analysis is that it is susceptible to inaccurate
detection of the malware that uses strong evasion and obfuscation
techniques [55]. As a consequence, static malware analysis tech-
niques are inadequate to detect unseen malware [56].

To address the limitation of static malware analysis, dynamic
or behavioral analysis based techniques are widely used, it detects
and classifies the malware by observing the behavior of the mali-
cious executables while it is actually running on the controlled and
monitoring environment. It canuseAPI calls [57] or systemcall [58]
or any other function-based [59] features to observe the behavior
of the executables during their run time on the OS. Therefore, these
approaches are well suited for capturing new and unseenmalware
variants.

Moskovitch et al. [8] have proposed an approach for the de-
tection of worm activity on a monitored computer system. They
managed to extract over 323 computer features using their de-
veloped agent on the monitored system. The obtained features
were reduced by using four feature selection techniques, while
four machine learning classifiers were used to evaluate the results.
The evaluation results showed 99% accuracy for specific unknown
computer worm activity. Shahzad et al. [60] proposed a novel
genetic footprint concept by mining information from the process
control block of a process. The footprint consists of the semantic
behavior of each executing process that can be used to discover
malicious processes at run-time. The proposed approach is capable
of discovering a malicious process rapidly (less than 100 ms) and
achieved an accuracy of 96% with 0% false alarm rate. Similarly,
Miao et al. [61] proposed bilayer abstraction method, it utilized
discriminant and stable behavior feature from semantic analysis
of dynamic API call sequences that are extracted during in execu-
tion of samples in a controlled system. Finally, the authors have
experimented using improved version of one-class Support Vector
Machine (SVM) algorithm to detect a new variant of unknown
malware with low FPR.

Islam et al. [62] presented classificationmethod that uses static
and dynamic features to classify benign and malware samples.
The static feature vector was formed by extracting a function
length frequency and printable string information from each ex-
ecutable (benign and malware). Similarly, the dynamic features
include API function names and parameters execution of each
benign and malware. Finally, these three features are combined to
construct integrated feature vector. Authors have used four ma-
chine learning classifiers namely, SVM, Random Forest, Decision
Trees and Instance-Based (IB) classifier to evaluate the classifica-
tion methodologies and achieved 97.05% of detection accuracy.
Recently, A.Kumar et al. [63] also used an integrated feature vector
that was comprised of each PE files of header fields raw value
and derived values. Authors have used various machine learning
classifiers and achieved 98.4% classification accuracy.

In contrast, very few approaches were concentrated to protect
CPSwhile detecting and performing classification ofmalware from
a VMM perspective. In order to protects real-time protection of
CPS, recently, Huda et al. [64] proposed a semi-supervised ap-
proach that protects the CPS against unknown malware attacks.
It uses an automatic malware database update strategy that help-
ful to extract patterns of dynamic changes of malware attacks.
The proposed approach has been evaluated against a real-world
malware sample of both static and dynamic malware features by
using four supervisedmachine learning classifiers, such as Random
Forest, SVM, J48 and IB and achieved higher malware detection
rate. Recently, one such research effort [65] leveraged a one-class
SVM technique at the hypervisor for detection of malware on a

live VM. The utilization of the features was at both system and
network level. In addition, custom volatility plug-in was used to
extract features from every resident process that impacted on the
generating training dataset. Overall, this approach achieved more
than 90% detection accuracy for two types of malware used in the
work.

While the behavioral analysis based method achieve promising
results, it has shortcomings. For example, when a sophisticated
stealthy malware, which uses rootkit functionality, is executed
on the sandbox or VM, the majority of execution path will not
execute or it is hard to retrieve full execution path and behavior
of such malware by the existing dynamic malware analysis ap-
proach [66,67].

In contrast, our AMMDS uses introspected and forensically ex-
tracted hidden and dubious executables at the VMM to measure
the detection accuracy of the malware on live introspected VM
where the CPS is functioning.

3. Assumption and threat model

In thiswork, we firstly assume that both the VMMand themon-
itoring VM are to be trusted and are operating under trusted com-
puting base [68] that sufficiently enforces physical security control,
while resisting hardware-based attacks on the virtualized cloud
infrastructure [69]. Secondly, the malware leverages guest OS vul-
nerabilities that cannot jeopardize the security of the AMMDS
operating in the privileged domain (Dom0) of the Xen hypervisor.
These assumptions are consistently shared by most of the VMM-
based previous security researches [12,33,22,20]. Thirdly, we do
not attempt to hide the fact that the established communication
channel between the State InformationRequester (SI-Requester) of
the AMMDS and the Guest AssistedModule (GAM) is secure during
the lifetime of the live introspected VM. It cannot be modified by
any kind of attack or security threats. Furthermore, some previous
researches [70] have highlighted the successful compromising of
the VMM and Dom0, but that is beyond the scope of this paper.

4. Overview of AMMDS

The AMMDS is a VMM-based guest-assisted introspection sys-
tem that advances the current out-of-VM security approach in an
automated, isolated, real-time, scientific manner, while function-
ing at the secure Monitoring Virtual Machine (Monitoring VM) or
Dom0. Fig. 1 shows an overview of the AMMDS, its major compo-
nents are: Guest VirtualMachine Introspector (GVM-Introspector),
ICVA, and Malware detector. It is introduced to efficiently inves-
tigate and detect any hidden, dead, and dubious processes, while
predicting early infection of the malware symptoms by internally
gathering and externally introspecting the volatile memory of the
live untrusted Monitored Virtual Machine (Monitored VM). The
AMMDS achieves this goal by using its integral component called
ICVA. Furthermore, Malware detector of the AMMDS consisting of
two sub-components that are OMD and OFMC. The OMD iden-
tifies whether the detected hidden and dubious process is ma-
licious or benign by cross-comparing with its LMSD and online
malware scanner based on the computed hash digest for each of
the extracted dubious executable. The OFMC leverages a practical
machine learning techniques to classify the execution of the un-
known malware from the reconstructed dubious semantic view
of the processes (i.e., noticed from a VMI perspective) forensically
extracted as executables from the seized live memory dump of the
introspected guest OS.
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Fig. 1. The proposed VMI-based AMMDS.

4.1. GVM-introspector

The prime function of the GVM-Introspector is to introspect
and extract the running processes information of the Monitored
VM. Its sub-components are: SI-Requester, TIT, VMI introspector,
and VMI memory acquisition. To start with, the GVM-Introspector
initiates the procedure of investigation by signaling to both the
SI-Requester and VMI introspector (step 1) to introspect and ac-
quire the current execution of the process state information of
the Monitored VM. The SI-Requester (step 2) triggers the GAM
via a secure communication channel3 to internally enumerate
the executing process state of the Monitored VM. Upon receiving
the internally acquired process state information, the SI-Requester
verifies whether the reply arrived within TIT. The time interval
between the state information request sent and the reply received
by the SI-Requester from the GAM is known as TIT. If the time gap
between the state information request and the reply lies within
the TIT, it continues the operation. At the same time, the VMI
introspector (step 2) introspects and reconstructs the memory
state of the Monitored VM from the hypervisor (externally) to
get currently running process details. The procedure followed by
the VMI introspector to reconstruct and obtain the semantic view
of the processes (including hidden processes) by traversing the
_EPROCESS Windows kernel data structure of the introspected
VMs is discussed in Section 4.1.1. In addition, the TIT, as shown
in Fig. 2, efficiently addresses the time synchronization problem,
which impacts on the detection of the malicious processes under
the dynamic creation and destroy of processes as discussed in the
second challenge of Section 1.

For example: Let T1 be the date and time at which the state
information request is sent to theMonitoredVM, and T2 be the date
and time at which the reply is received by the SI-Requester from

3 A secure communication channel is established between the SI-Requester and
the GAM by the AMMDS as soon as the Monitored VM is launched by the VMM.
The SI-Requester holds native information (IP address and Port number) of the
Monitored VM and it triggers the GAM in the form of state information request to
receive internally acquired process information of the Monitored VM.

Fig. 2. Time interval threshold used by AMMDS.

the GAM. After receiving the state information, the SI-Requester
checks the time interval between T2 and T1; T2 − T1 > ∆T . Then,
the SI-Requester instantly resends the request (maximum3 times),
if the response is delayed or not received within the predefined
∆T (where ∆T denotes the predefined threshold time that ranges
between 2 to 3 second). Then, the AMMDS confirms that the
Monitored VM is in an infected state and immediately informs the
VMI memory acquisition (step 3) to pause and perform memory
acquisition (step 4), and then, to resume running the Monitored
VM.

If T2 − T1 ≤ ∆T then, both the SI-Requester and VMI in-
trospector continue periodic introspections of the Monitored VM
by extracting and relocating the process run-state information to
the ICVA (Step 2 and Step 3). Further, the ICVA (will be shortly
introduced) cross-examines the acquired process state informa-
tion. This process continues throughout the lifetime of the live
Monitored VM. The novel time synchronization technique, the TIT
helps the ICVA to detect hidden and malicious state information
of the Monitored VM. For instance, the processes P1, P2, P3...., PN
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currently being run at the Monitored VM and their details are
extracted internally between the time intervals T1 and T ′′1 . If any
process expires or dies after T ′′1 and before T2, the process details
will not appear in the state information caught externally by the
VMI introspector, but can be found in the internally captured state
information, such processes are treated as dead processes.

In contrast, if a new process, PN+1 is created between T ′′1 and
T3, then the process details will appear only in the externally
captured state information and not in the internally captured state
information. As a result, process PN+1 is recognized as a hidden
process, even though process PN+1 is not concealed. Thus, a
disparity emerges between the internally and externally captured
state information. Further, to check the maliciousness of the new
process PN+1, the ICVA immediately signals to the VMI memory
acquisition (step 4) to pause and accomplish memory acquisition
of the Monitored VM. The executable file extractor extracts the
entire executable file of the corresponding process from the seized
memory dump of the Monitored VM.

4.1.1. Memory state reconstruction
Since the VMM view of the Monitored VM is available in raw

memory state, the AMMDS performsmemory state reconstruction
before it collects and analyzes the process run state information
of the Monitored VM at the VMM. This can be done with the VMI
introspector by leveraging the address translationmechanism [29].
The use of the xc_map_foreign_range() function, provided in the
Xen Control Library (libxc) helps the VMI introspector of AMMDS
to understand and reconstruct the volatile memory artifacts of the
live Monitored VM without its consent. Later, the same function
accesses the RAM artifacts, and finally, converts the page frame
number to memory frame number [71].

In the Windows system, each process associated with a data
structure is called as _EPROCESS; each _EPROCESS has many
data fields including one Forward Link (FLINK) pointer and one
Backward Link (BLINK) pointer. The FLINK contains the address
of the next _EPROCESS, while the BLINK stores the address of
the previous _EPROCESS. The first field of the _EPROCESS is a
process control block, which is a structure of the type Kernel
Process (KPROCESS). The KPROCESS is used to provide data related
to scheduling and time accounting. The other data fields of the
_EPROCESS are PID, Parent PID (PPID), exit status, etc., [71]. The
field position of the PID and the PPID in the _EPROCESS structure
may differ from one OS to another, and the series of FLINK and
BLINK systematizes the _EPROCESS data structure in a doubly
linked list. The Windows symbol, such as the PsActivePro-
cessHead (head of the doubly linked list) traverses the whole of
the doubly linked list _EPROCESS from the beginning to the end
providing all the running process details. In order to identify the
hidden processes at user and kernel-mode of the Monitored VMs,
our proposedVMI introspector scans the rawmemory by looking at
the _EPROCESS structure patterns of theMonitored VM, as similar
to the previous approach [20,72].

4.2. Guest assisted module

The GAM is a lightweight component that is placed inside the
Monitored VM (soon after the guest OS are created by the VMM). It
is controlled and operated by the SI-Requester on-demand via an
established secure communication channel. During introspection
by the AMMDS, the GAM will not create its own processes but
will make use of its built-in tasklist command of the native
Windows to acquire the running processes of the live Monitored
VM and forward it to the SI-Requester in the form of a text file.
The GAM can be tampered by the malware as it is placed in
the untrustworthy Monitored VM. Under these circumstances, the
AMMDS estimates the symptoms of malware execution when de-
lay ormodification occurs, while forwarding the internally acquired
state information by the GAM (see Section 4.1).

Table 1
Notation and description.

Symbol Meaning Symbol Meaning

BFV Benign Feature Vector ps Process
MFV Malware Feature Vector PN Process Name
PID Process Identifier DO Descending Order
INTpsc Internal process count MG Malware Group
EXTpsc External process count BG Benign Group

4.3. Intelligent cross-view analyser

The ICVA is an integral component of the AMMDS and its prime
function is to perform an intelligent examination of the internally
captured and externally introspected execution state information
to recognize hidden, dead, and dubious running processes of the
Monitored VM. The notations used by the AMMDS are shown in
Table 1.

The process details of the Monitored VM introspected from the
hypervisor undergo preprocessing operation, and are then stored
as EXTps = {PID ∥ PN1, PID ∥ PN2, PID ∥ PN3....., PID ∥ PNm},
where, the PID ∥ PNm represents the mth process. The internally
captured process details after the preprocessing operation are
represented as INTps = {PID ∥ PN1, PID ∥ PN2, PID ∥ PN3....., PID ∥
PNn}, where, PID ∥ PNn represents the nth process.

The ICVA conducts the preprocessing operationwhile removing
unimportant state information and sorts the elements of both the
EXTps and INTps in ascending order based on the PID. The total
number of processes gathered from the EXTps are symbolized as
EXTpsc

EXTpsc =| EXTps | (1)

Similarly, the total number of processes gathered from INTps are
symbolized as INTpsc

INTpsc =| INTps | (2)

where, | INTps | and | EXTps | represent the cardinality of INTps
and EXTps, respectively. The cardinality of INTps, EXTps is the total
number of elements (processes) in the INTps and EXTps.

The ICVA proficiently detects the hidden, dead, and dubious
running processes and predicts the symptoms of the malware
execution on the Monitored VM based on the decision function as
follows:

ICVA(EXTps, INTps) ={Hidden if (PID/PN ∈ EXTps and PID/PN ̸∈ INTps)
Dead if (PID/PN ̸∈ EXTps and PID/PN ∈ INTps)
Dubious if (PID/PN ∈ EXTps and PID/PN ∈ INTps)

(3)

However, at the end of the scrutiny, it is not feasible for the
ICVA to check whether these processes are malicious or not. To re-
solve this ambiguity, it commands (on confirmation of Eq. (3)) the
VMI memory acquisition (step 4) to pause and perform memory
acquisition of the Monitored VM. At the same time, the executable
file extractor (step 5) component extracts all the hidden and active
dubious executables (.exe).

4.4. Malware detector

The Malware detector of the AMMDS consists of three sub-
components that are Executable file extractor, OMD, and OFMC.

4.4.1. Executable file extractor
The major function of the executable file extractor is to extract

complete executables that correspond to detected hidden and
dubious processes as indicated by the ICVA. The executable file
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extractor accomplishes this task by utilizing the procdump plugin
of an open source volatility tool4 based on the consistent state
of seized memory dump of the Monitored VM. The executable
file reconstruction is achieved by parsing the PE header data
structure [73,74] from the obtained VM memory dump. Once the
hidden and dubious executables are extracted, the OMD and OFMC
investigate them individually to ascertain anymalicious substance
is present in the reconstructed executables.

4.4.2. Online malware detector
The OMD computes a hash digest for the extracted executables

soon after receiving the confirmation from the executable file
extractor. The OMD computes three distinct hash digests such
as Secure Hash Algorithm-256 (SHA-256), Secure Hash Algorithm
1 (SHA-1), and Message Digest (MD5), for each of the extracted
executables. Further, these computed hash digests checked with
LMSD5 to identify the malware which are known in the digital
world. If the OMD does not find any match, then it sends the
generated hash digests to powerful publicly available free online
malware scanner6 to obtain an analysis report of the examination
that provides whether the tested executable file is malware or
benign. The left side of the Fig. 3 depicts the sequence of operations
followed by the OMD to check maliciousness of the given input
executables. However, the main limitation of the online malware
scanner is that it is unable to detect the new variants of malware
due to unavailability of a new malware signature in its database.
Meanwhile, malware detector uses the OFMC to detect and classify
unknown malware using machine learning techniques.

4.4.3. Offline malware classifier
The OFMC is another important subcomponent of the malware

detector and it addresses the limitation of the OMD, while accu-
rately classifying any kind of executables as benign or malware by
employing machine learning techniques. For any machine learn-
ing based malware detection approach, first, the classifier model
should be trained with a sufficient number of benign and malware
executables so that the classifier model can easily and quickly
distinguish malware executables from benign executables. The
training phase of OFMC comprises of feature extraction and feature
selection techniques (will be shortly introduced) and FFV gener-
ation which in turn needed to perform malware classification. In
the evaluation phase we perform detection of unknown malware
which are forensically reconstructed as detected hidden and dubi-
ous executables based on the trained classifier. In this evaluation
phase, the OFMC functions on the reconstructed executables by
extracting N-grams as features and then prepares the testing file
by using FFV with extracted N-grams of an executable file to be
verified. The right side of the Fig. 3 depicts the steps followed by
the OFMC to identify the given test input executables as benign
and malicious.

Feature extraction technique: The executables are used as
input files in the first step of feature extraction to extract the
hexadecimal dump, and then pre-process the hexadecimal dump
to remove any irrelevant information. After the pre-processing
operation, only the byte sequences that represent a snippet of
the machine code of the executable received. The extracted byte
sequences are grouped in the form of N-gram [75], which repre-
sents contiguous bytes sequences, where N represents the number
of bytes. In this work, we have chosen N-gram of size 4 bytes
for the OFMC experimental analysis to achieve best malware de-
tection rate. The steps involved to obtain the N-grams from the

4 http://www.volatilityfoundation.org/.
5 LMSD consists of 107520MD5, SHA1, and SHA256 hash digests for knownmal-

ware which were downloaded from https://virusshare.com/ malware repository.
6 https://www.virustotal.com/.

Algorithm 1: Feature extraction
Input : Binary files (.exe) F = {f1, f2, f3, . . . ,fM}
Output: N-gram files fN = {fN1 , fN2 , . . . ,fNM }

1 foreach file fi ∈ F do
2 Extract hexadump, N-grams
3 hdi←− hexadump(fi) // hd - hexadecimal dump
4 gi←− preprocess(hdi) // g - temporary file
5 Create N-gram file fNi
6 while not EOF(gi) do
7 N-gram←− N-gram (gi)
8 fNi .append(N-gram)
9 end

10 end
11 fN = {fN1 , fN2 , . . . ,fNM }

executables is shown in Algorithm 1. Each individual N-gram is
considered as a feature and all N-grams of all executables in the
training dataset are treated as original feature vector.

The N-gram based technique produces a large number of N-
grams that include duplicate N-grams. All the N-grams cannot be
used as final features to generate a training file as well as a testing
file as needed by the classifier because it may result in memory
consumption and performance overhead. In addition, it may also
reduce the predictive performance of the classifier with more FPR.
In order to address these issues, the feature selection technique is
employed.

Feature selection technique: The approach for selecting the
best features from the original feature vector plays an imperative
role in classifying the input files accurately. The feature selection
step identifies which features are highly crucial and which are
noisy from the original feature vector by generating a score for each
feature. The noisy features are ignored because they degrade the
predictive accuracy of the classifier. In thiswork, OFMC comprising
of two statistical techniques such as NGL Correlation Coefficient
(CC) and Odds Ratio to rank each feature individually and recom-
mend the prominent features based the procedure described in
Algorithm 2.

(a). NGL Correlation Coefficient: NGL Correlation Coefficient
(CC) is a variant of the chi-square test [76]. It selects the features
(N-grams) that are correlate with class Ci and does not select
features that are correlated with other classes. The NGL CC score
for a given N-gram of class Ci is computed as follows:

NGL(N-gram, Ci) =

√
N(PS − RQ )

√
(P + R)(Q + S)(P + Q )(R+ S)

(4)

Where, N represents the total number of N-gram files in the
dataset, P indicates the number of N-gram files in class Ci that
contains N-gram, Q is the number of N-gram files other than class
Ci that contains N-gram, R is the number of N-gram files in class Ci
that does not contain the N-gram, and S is the number of N-gram
files that does not contain the N-gram, other than class Ci. The class
Ci = {benign, malware}.

(b). Odds Ratio: It is one of the popular feature selection tech-
niques. A positive score of Odds Ratio indicates that the given N-
gram often appears in a given class as compared to other class. A
negative score represents that the given N-gram presence is more
in the other class. Odds Ratio for binary classification is defined as
follows [77]:

OddsRatio(N-gram, Ci) =

log
P(N-gram | benign)(1− P(N-gram | malware))
P(N-gram | malware)(1− P(N-gram | benign))

(5)

http://www.volatilityfoundation.org/
https://virusshare.com/
https://www.virustotal.com/
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Fig. 3. Flow chart of the AMMDS for detection of malware using OMD and OFMC components.

P(N-gram | benign) is the probability of occurrence of N-gram
in benign class. Similarly, P(N-gram| malware) is the probability
of occurrence N-gram in malware class. The class Ci = {benign,
malware}.

5. Implementation and evaluation

5.1. Experimental setup

To evaluate the efficiency of our proposed AMMDS, the host
system that had the following specifications: Ubuntu 14.04 (Trusty
Tahr) 64-bit operating system, 8 GB RAM, Intel(R) core(TM) i7-
3770 CPU@3.40 GHz, was utilized to conduct experiments. The
popular open-source bare metal hypervisor such as Xen 4.4.l was
used to set-up a virtualized environment. TheWindows XP SP3 32
bit Monitored VM was created as DomU to act as CPS and it was
controlled by the Monitoring VM (Dom0) of the Xen hypervisor.
The AMMDS was installed on the Monitoring VM and the popular
open source VMI tool,7 such as the LibVMI version 0.10.1 to acquire
the RAM dump of the Monitored VM. An open source forensic
memory analyzer such as Volatility was applied to construct ex-
ecutables from the acquired infected memory dump. The machine
learning algorithms’ suite such as WEKA [78] was employed to
achieve offline malware detection and classification at VMM level.

7 http://libvmi.com/.

5.2. Implementation

Our proposed AMMDS is implemented using the Python pro-
gramming language and its implementation was structured at
three levels: (i) the AMMDS functions as an advanced automated
VMI-based security solution by using open source VMI tool to
introspect semantic viewof run state of themonitoredVM. Further,
it is also acquiring the memory dump of the Monitored VM when
symptoms of malware are detected at the introspected guest OS
without the knowledge of one being monitored. (ii) ICVA is im-
plemented as PoC and induced into the AMMDS, which detects
hidden, dead, and dubious processes. (iii) Implementation of the
malware detection component includes both OMD and OFMC. The
OMD checks the detected hidden and dubious process as benign
and malware by cross-comparing with both LMSD and online
malware scanner. At the same time, implementation of OFMC
uses feature extraction and feature selection techniques (see Algo-
rithms 1 and 2) facilitate to construct FFV in order to detect actual
unknownmalware from introspection-cum-forensically extracted
hidden and dubious executables using trained machine learning
classifiers at VMM.

http://libvmi.com/
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Algorithm 2: Feature selection
Input :△ = {B = {fNB1

, fNB2
, . . . ,fNBM

} ∪M = {fNM1
, fNM2

, . . . ,fNMM
}

}
Output: Selected features (N-grams)

1 Create files BOR, MOR, BNGL and MNGL
2 // B(M)OR - benign (malware) Odds Ratio
3 // B(M)NGL - benign (malware) NGL
4 foreach file fNi ∈ △ do
5 foreach N-gram ∈ fNi do
6 Compute Odds-Ratio as per equation(5)
7 OR_score←− Odds-Ratio(N-gram)
8 if (fNi ∈ B) then
9 Store N-gram and OR_score into a file

10 BOR.append(N-gram, OR_score)
11 else
12 MOR.append(N-gram, OR_score)
13 end
14 Compute NGL score as per equation(4)
15 NGL_score←− NGL(N-gram)
16 if (fNi ∈ B) then
17 Store N-gram and NGL_score into a file
18 BNGL.append(N-gram, NGL_score)
19 else
20 MNGL.append(N-gram, NGL_score)
21 end
22 end
23 end
24 Sort BOR and MOR in descending order based on OR_score
25 Sort BNGL and MNGL in descending order based on NGL_score
26 Select top ’L’ number of N-grams from BOR and MOR

separately
27 Select top ’L’ number of N-grams from BNGL and MNGL

separately

5.3. Dataset creation and uses

About 3375 Windows malware samples (executables) were
collected from the VX Heaven8 malware repository by directly
connecting the Windows Monitored VM to an external network.
In addition, 675 Windows benign executables were also collected
from a freshly installed Windows Monitored VM along with other
data source9 that included both Windows native utilities and
application executables. These executables were invoked by our
developed program on theWindows Monitored VMwith different
experimental scenarios, including the installation of 2 rootkits such
as Hacker Defender and FU Rootkit. These rootkits used to
explicitly hide the running benign and malware processes on the
guest OS. The experimental results depicted in Table 2 illustrate
the execution of different categories of malware samples on a live
Monitored VM.

5.4. Evaluation and results discussion

In this section, we discussed the evaluation and results analysis
of proposed approach based on VMM-based generated dataset that
was generated by executing benign and malicious executables on
liveMonitored VM. In order to prepare the training and testing files
that are required to evaluate the performance of the OFMC, the

8 http://vxheaven.org/.
9 http://download.cnet.com/windows/, accessed on July 2016.

collected malware, and benign executables were divided into two
parts: Set-A and Set-B. The Set-A consisted of 60% of total samples
and these were used to train the classifier and the remaining
40% of samples were grouped into Set-B. In the testing phase,
malware and benign samples from Set-B were executed on live
Windows XP Monitored VM in different experimental cases (as
shown in Table 2) while measuring the detection proficiency of
the AMMDS to detect hidden, dead and dubious processes. Finally,
the semantic view of these detected processes were forensically
reconstructed as executables from the infected memory dump of
the guest OS. These injected malware and benign samples were
forensically extracted in the form of dubious executables to detect
actual malicious executables by following the procedure discussed
in Section 4.1.

The experimentswere performed at different stages to evaluate
the malware detection proficiency of the AMMDS. The procedure
employed by the OMD to detectwhether the extracted executables
is malware or benign is discussed in Section 4.4.2. As part of the
experimental observations, we have performed six different tests
using different types of malware and benign executables on a
freshly installed Windows Monitored VM for each test as shown
in Table 2. More precisely, in test I, we executed 160 Trojan and
45 benign files, totaling 205 executables on a clean live Windows
guest OS. Once all the executables were injected, some Trojan
executables hid or disappeared on the Windows guest OS. At the
same time, we also injected a Hacker Defender user-mode rootkit
to explicitly hide two benign (explore.exe and chrome.exe) and
onemalware (Trojan.Win32.exe) process running on theMonitored
VM. These experiments lasted 4 min. A periodic introspection of
the AMMDS system helped in identifying the symptoms of mal-
ware execution by recognizing the disparity of the processes that
emerged between the internal and external view of the processes
state information of the Monitored VM (see Section 4.3).

As seen in test I of Table 2, the AMMDS system ascertained
and counted the introspected processes, namely, internal, exter-
nal, hidden, dead, and dubious processes as 221, 225, 5, 1, and
220, respectively. However, there were variations in the detected
processes counted on the internally captured and externally in-
trospected process state information including 21 (additional)
running default processes of the clean Windows guest OS. More
specifically, the internal view of the total process visible is 221,
i.e., from the 205 total injectedmalicious and benign executables, 5
processes (3 were self-hidden by the Trojan and rootkit and 2were
benign processes that are explore.exe and chrome.exe explicitly hid-
den by the Hacker Defender rootkit) are hidden at the guest OS
and 21 are native running processes of the guest OS. Finally, 221 are
internally gathered processes. Note that these 5 hidden processes
are not gathered by the GAM (i.e., internal view of guest OS) as
it does not appear in the tasklist command of the GAM (See
Section 4.2). Finally, the VMI introspector of the AMMDS externally
(i.e., VMM level) introspect and ascertain these 5 hidden processes.

Similarly, in the II experiment, we injected 185 Backdoor and 45
benign files, totaling 230 executables on the clean Windows guest
OS. Meanwhile, in this test we have injected direct kernel object
modification based kernel-mode, FU Rootkit to explicitly hide a
few benign and malware running processes by directly removing
or unlinking it from the _EPROCESS data structure of the process
list at the kernel-mode. Finally, the disparity of the processes is
identified by the ICVA of the AMMDS similar to test I. Likewise, ex-
periment III, IV, V, and, VIwere conducted by executing other types
of malware and benign executables on the guest OS. Finally, six
different experimental test cases, the AMMDS reconstructed over
21 hidden and 1725 dubious executable as VMM-based generated
malware dataset from six infected memory dumps of the guest OS
at VMM as shown in Table 2.

In each test cases, the OMD computes hashes digest for all the
reconstructed executables from the captured memory dump and

http://vxheaven.org/
http://download.cnet.com/windows/
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Table 2
Execution of malware and benign executables on live Monitored VM in different experimental test cases.

Test #. Malware types # Executables used # ps visible ps introspected # ps detected by AMMDS

Malware Benign Total by internal view from external view Hidden Dead Dubious Time (in second)

I Trojan 160 45 205 221 225 5 1 220 2.45
II Backdoor 185 45 230 249 250 2 1 248 2.25
III Worm 210 45 255 273 274 3 2 271 2.81
IV Virus 230 45 275 292 294 4 2 290 2.55
V Adware 270 45 315 333 345 3 1 342 2.62
VI Spyware 295 45 340 357 358 4 3 354 2.75

Total # of executables 1350 270 21 1725

Table 3
Identifying an actual malicious process from test-I of detected hidden processes by OMD of AMMDS.

Malware type No. of hidden process to be checked MD5 hash digest for classified hidden process Predicted as PS name Detection rate

Trojan 5 55cc1769cef44910bd91b7b73dee1f6c Malicious hxdef073.exe 51/53
6cf0acd321c93eb978c4908deb79b7fb Benign chrome.exe 0/53
bf4177e1ee0290c97dbc796e37d9dc75 Benign explore.exe 0/53
1338dfc088a24a477dd3c6d65fe71b9b Malicious stubd.exe 33/43
5fcfe2ca8f6b8d93bda9b7933763002a Malicious kelihos dec.exe 36/54

Table 4
Identifying an actual malicious process from test-I of detected dubious executables by OMD of AMMDS.

Malware type No. of dubious process to be checked MD5 hash digest for classified dubious process Predicted as PS name

Trojan 220 0bf067750c7406cf3373525dd09c293c Known malware EFMTnkTm-216.exe
376121485bee9e8885d879d5407388c3 Known malware Win32.Hidedoor.exe

then performed cross-examinationwith LMSDand onlinemalware
scanner based on the computed hash digest. The time elapsed to
generate the hash digest for malware of different types malware
and benign (i.e., reconstructed executables of all six test cases) is
shown in Fig. 4a. Similarly, the time taken by the OMD to detect
the known malware by cross-comparing with LMSD (based on
computedhashes) is shown in Fig. 4b. Table 3 represents the results
of onlinemalware scanner for the detected 5 hidden processes that
included 1 rootkit self-hidden process (hxdef073.exe), 2 explic-
itly hidden benign processes by the Hacker Defender rootkit
(chrome.exe and explore.exe), and other 2 are self-hidden by the
Trojan malware on the monitored VM. The Fig. 5 represents the
snapshot of execution of the Kelihos dec.exe malware (not hidden)
detected by the online malware scanner with a detection rate
of 36/54. Table 4 represents the AMMDS classified 220 as dubi-
ous executables and cross-compared with both LMSD and online
malware scanner to detect any known malware. Finally, Fig. 6
represents a snapshot of OMDdetected the knownmalware named
EFMTnkTm-216.exe by cross-checking with LMSD.

5.5. Experimental methods

The prime aim of the OFMC is to explore the accurate detection
and classification of malicious executables that are semantically
reconstructed as hidden and dubious executables on live Moni-
tored VMs using machine learning techniques. It has been seen
in many researches [49,53,54,65,79,80] that the overall process
of classifying unknown executables as benign or malware using
machine learning techniques consists of two phases, training, and
testing phase. In training phase, 60% of the benign and malware
samples of the training set (i.e., Set-A) are used to prepare a
training file. The first step in the training phase is to pre-process
the training samples to derive the N-gram features using the ap-
proaches explained in Section 4.4.3. It has been seen in previous
researches that N-gram feature of size 4 bytes exhibits promising
results [49,50]. Therefore, we have decided to perform feature
construction using N-gram of size 4 bytes during the evaluation
of our proposed approach. Since the constructed features size is
quite large, it is impractical to use all the extracted features to
prepare a training file required to train the classifier to attain the

Fig. 4. The average time consumed by the OMD to generate SHA-256, SHA-1, and
MD5 hash digest for execution of different types of malware (4a). Time taken by
the OMD to identify the known malware by cross-checking with LMSD based on
computed hash digest (4b).

real-time detection of the malware. Therefore, only the crucial
topmost features were selected on the basis of the rank assigned
by the feature selection techniques (as discussed in Algorithm
2). For each of the feature, two separate feature score (rank) are
computed using two different feature selection techniques namely
NGL CC and Odds Ratio. Based on the highest feature score, the
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Fig. 5. Snapshot of OMD for identification of malicious (not hidden) process kelihos_dec.exe from online malware scanner.

Fig. 6. Snapshot of OMD for the detection of known malware by cross-checking with LMSD.

length (L) of the topmost features 250, 500, and 750 are selected
to verify which feature length achievesmore accuracy. The symbol
L represents the number of topmost features selected based on the
highest feature score from each class separately used to generate
FFV. Finally, a training file is built using the FFV with the N-gram
files corresponding to the training samples. Lastly, the classifier is
trained using the constructed training file.

Next, during the testing phase, executables excluded from the
training set are used to construct a testing file. To evaluate the
testing phase, binary files belong to Set-B are executed on a live
Windows Monitored VM in different experimental scenarios for
each type of malware and benign samples, and finally, those exe-
cutables are semantically detected (VMI perspective) and forensi-
cally extracted at the VMM level are in dubious form (as discussed
in Section 4.1). The reconstructed hidden and dubious executables
are first parsed and then representative feature vector is extracted
as a training instance. Based on this feature vector, the classifier
categorizes the testing file as either benign ormalware in real time
at the hypervisor.

The overall malware detection rate of the OFMC is measured
in the testing phase by following the K/N-fold cross-validation
approach. Here, the independent dataset is randomly divided into
N equal-sized subparts (samples). Out of these N subparts, a single
subpart is retained as validation data, and the remaining N − 1
subparts are used as training data. The cross-validation process is
reiterated N times (i.e., N-folds) and the final results are presented

Table 5
Confusion matrix.

Class Predicted malware Predicted benign

Malware True Positive(TP) False Negative(FN)
Benign False Positive(FP) True Negative(TN)

as an average of all the folds. This approach helps in systematically
evaluating the robustness of our OFMC to detect and classify un-
known malware from extracted executables.

5.6. Evaluation metrics

The classifier detection performance can be measured by com-
puting the difference between the predicted class for a given input
and the actual class that the input belongs to. For instance, if the
test input data is of the benign class and the classifier predicts it as
benign, then, it is a correct classification. To quantify the detection
performance of the classifier, the 2 × 2 confusion matrix is used
(shown in Table 5) as it provides all the possible outcomes of a
prediction and has the form TP, TN, FP, and FN of the classifier. The
detection of the classifier is considered as TP when a malware file
is properly identified as a malware otherwise, it is treated as FN.
Any benign file classified as malware is treated as FP otherwise, it
is measured as TN. Six performance metrics such as True Positive
Rate (TPR), FPR, Precision, Recall, Accuracy, and F-measure were
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used in this work to measure the performance of the classifier
as shown in Eq. (6). Finally, the weighted average result of the
performance metrics was considered.

TPR =
TP

(TP+ FN)
; FPR =

FP
(FP+ TN)

Precision =
TP

(TP+ FP)
; Recall =

TP
(TP+ FN)

Accuracy =
TP+ TN

(TP+ TN+ FP+ FN)

F −Measure = 2 ∗

(
Precision ∗ Recall
Precision+ Recall

)
(6)

5.6.1. Results analysis
Six popularmachine learning technique such as Logistic Regres-

sion, Random Forest, Naives Bayes, Random Tree, and Sequential
Minimal Optimization (SMO), and, J48 were used to measure the
effectiveness of the proposed approach individually. All the chosen
classifiers were initially trained with the default parameters avail-
able in theWEKA. Next, during the evaluation of each classifier, we
selected three different FFV of length L = 250, L = 500, and L =
750 were selected from the training set to train the classifier. The
evaluation performed by following the 10-fold cross-validation. It
randomly splits the original input file into 10 equal subparts,where
9 subparts are used as the training dataset and the remaining 1
subpart is used as the validation data to measure the detection
efficiency of the classifier. The cross-validation process is reiter-
ated 10 times (the folds) for every combination with the condition
that each subpart is used once as testing data. Finally, the outcome
of each fold is averaged to estimate the overall efficiency of the
classifier. The same steps are repeated separately for different FFVs
of different sizes from two different feature selection techniques.
This approach helps in systematically evaluate the feasibility of our
proposed OFMC of the AMMDS to measure detection and the clas-
sification accuracy of malware from semantically reconstructed
dubious executables at the VMM.

In the initial experiments, we observed that the Random Forest
classifier achieved the highest accuracy on all three different L
for two feature selection techniques, as compared to the other
classifiers. Fig. 7 and Table 6 provides details of the malware de-
tection accuracy and TPR and FPR achieved by different classifiers
for 10-fold cross-validation evaluation. In particular, the Random
Forest classifier achieved an accuracy of 99.75% with 0.003 FPR,
99.83% with 0.002 FPR, and 100% with 0 FPR for L = 250, L =
500 and L = 750 features respectively for suggested feature
of NGL feature selection technique. Similarly, the same classifier
performs pretty well on the features that are suggested by Odds
Ratio feature selection technique while yielding an accuracy of
99.78% with 0.002 FPR, 99.87% with 0.001 FPR and, 100% with 0
FPR for L = 250, L = 500, and L = 750 respectively. The main
reason to achieve better accuracy by the Random Forest classifier
is that, it uses multiple decision trees that are randomly chosen
to vote for overall classification of the given input file, where each
decision tree classifies the new instance of featureswith amajority
of the vote [81]. In this work, the Random Forest classifier achieved
highest accuracy under the default parameters (tree size, T = 10),
where, T represents the number of decision trees in the ensemble.

It can also be seen fromFig. 7 is that the second highest accuracy
yielded is by Logistic regression classifier ranging from 99.71%
to 99.82% followed by Navies Bayes, Random Tree, SMO and J48
classifiers for L = 250, L = 500 and L = 750 feature of NGL

based feature selection techniques. Similarly, for Odds Ratio based
feature selection technique, Navies Bayes achieved second highest
accuracy ranging from 99.55% to 99.75% followed by Logistic Re-
gression, SMO, Random Tree, and J48 classifiers for L = 250, L =
500, and L = 750 respectively.

The performance of the each classifier was also evaluated using
other performance metrics such as Precision, Recall, F-Measure,
and Receiver Operating Curve (ROC) area separately for the both
the feature section techniques. Fig. 8(a), (b), and (c) represents
different performance metric results for three different feature
lengths 250, 500, and 750, which are selected based on the highest
feature score recommended by NGL CC selection technique. We
notice that themaximumdetectionproficiency of themalwarewas
achieved by random forest classifier for L = 750 with 0.998, 0.999,
1, 1 of precision, Recall, F-Measure and ROC respectively. Similarly,
Fig. 8(d), (e), and (f) represents performance metric results of all
classifier for L = 250, L = 500, and L = 750 as recommended by
the Odds Ratio feature selection technique. It can also be notice
that, for L = 750 of Odds Ratio feature selection techniques
the same Random forest classifier yielded 0.998, 1, 0.999, 1 of
precision, Recall, F-Measure and ROC respectively. Furthermore,
the malware detection performance of all other classifiers are de-
picted in Fig. 8with appropriate feature lengths of feature selection
techniques. The lower accuracy shown by the J48 classifier for
different feature length of both NGL CC and Odds Ratio feature
selection techniques.

5.7. Performance overhead

In order to measure performance overhead induced by the
AMMDS, a series of testswere performed by running the PCMark05
industry standard benchmark suite onWindows XP SP3Monitored
VM. Tests such as the Memory, HDD, and CPU of the PCMark05
were executed separately on the guest OS in two different set-
tings. Each test was reiterated five times and an average five-
time execution of each test was considered. In the first setting,
the AMMDS was deactivated (not functioning), and in the second
setting, the AMMDS was activated (running). Fig. 9 represents the
overall performance overhead caused by AMMDS. Tests such as
File Decryption, HDD-Text Startup, and HDD-File-Write induced
maximum performance overheads of 4.9%, 5.8%, and 4.6%, while
other test performance overheads were less than 4.5% on theWin-
dows XP SP3Monitored VM. Thesewere noticedwhen the AMMDS
abstracted the process semantic view during explicit detection of
the hidden, dead, and dubious processes and pause and perform
acquisition of the memory dump of the live Monitored VM.

6. Discussion

The current development of the proposed AMMDS included
extended functionalities for detection and estimation of the symp-
toms of malware execution on the live Monitored VM. In addition,
the incorporation of machine learning techniques emphasized as
the first scientific in-guest assisted VMI introspection technique to
precisely detect and classify the running processes on the Moni-
tored VM as benign or malicious at the VMM. The AMMDS per-
formed this task from the semantically reconstructed executables
that were introspected and forensically extracted at the VMM. The
current demonstration of this approach is specific to theWindows
guest OS to automatically detect the execution of largemalware on
the live Monitored VM by eliminating manual analysis.

The AMMDS successfully addresses all the challenges discussed
in Section 1. The different categories of real world malware exe-
cutables used in this work include self-hidden behavior malware,
which hides on execution on the guest OS. In addition, we also
used both user-mode and kernel-mode rootkits to explicitly hide
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Table 6
TPR and FPR of different classifiers on different feature length.

Feature Length L = 250 L = 500 L = 750

Classifier Metrics NGL CC Odds ratio NGL CC Odds ratio NGL CC Odds ratio

Logistic Regression TPR 0.998 0.995 0.998 0.998 0.998 0.998
FPR 0.002 0.005 0.002 0.002 0.002 0.002

Random Forest TPR 0.998 0.997 0.998 0.998 1 1
FPR 0.003 0.002 0.002 0.001 0 0

Naives Bayes TPR 0.995 0.995 0.995 0.995 0.995 0.998
FPR 0.005 0.005 0.005 0.005 0.005 0.002

Random Tree TPR 0.995 0.988 0.995 0.99 0.995 0.993
FPR 0.005 0.012 0.005 0.01 0.005 0.007

SMO TPR 0.995 0.995 0.995 0.995 0.995 0.998
FPR 0.005 0.005 0.005 0.005 0.005 0.002

J48 TPR 0.978 0.975 0.985 0.975 0.985 0.975
FPR 0.022 0.025 0.015 0.025 0.015 0.025

(a) L = 250. (b) L = 500. (c) L = 750.

Fig. 7. Malware detection accuracy achieved by different classifiers based on NGL CC and Odds Ratio feature selection techniques for three different feature length.

(a) L = 250. (b) L = 500. (c) L = 750.

(d) L = 250. (e) L = 500. (f) L = 750.

Fig. 8. Comparison of performance of the classifier under different performance metrics for the different feature length recommended by NGL CC and Odds Ratio feature
selection techniques.
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Table 7
Comparison of results with other VMM-based and non-introspection based malware detection approaches that used machine learning techniques.

Related work Feature types Approaches Accuracy FPR VMM

Masud et al. [50] N-gram SVM, Boosted J48 96.88% □ ×

Shabtai et al. [53] Opcode SVM, LR, RF, ANN, DT, BDT, NB, BNB >96% 0.02 ×

Bai and Wang [54] Byte N-gram + Opcode N-gram + Format feature J48, RF, AdboostM1(J48), Bagging(J48) 99% 0 ×

Zhanget et al. [67] Multi-feature XGBoost, ExtraTreeClassifier, GradientBoost 99.72% □ ×

Bai and Wang [54] N-gram, opcode J48, RF, AdboostM1(J48), Bagging(J48) 99% 0 ×

Huda et al. [64] String feature RF, SVM, J48, NB and IB 100% 0 ×

Watson et al. [65] Statistical meta-features One-class SVM >90% □
√

Proposed work N-gram LR, RF, NB, RT, SMO, J48 100% 0
√

Logistic Regression (LR), Random Forest (RF), Artificial Neural Networks (ANN), Decision Trees (DT), Boosted Decision Trees (BDT) Naive Bayes (NB),
Boosted Naive Bayes (BNB), Random Tree (RT), Simple Logistic (SL), □: indicates information not available in the previous work.

Table 8
Comparison of AMMDS with previous VMI-based malware detection approaches.

Functionality Lycosid [25] Lare [33] VMwatcher [20] Process-out-grafting [22] SYRINGE [34] AMMDS

Hidden process detection
√

□
√

□ □
√

Time synchronization × × × × ×
√

Incorporation of MFA × × × × ×
√

Malicious check on
hidden and dubious process × × × × ×

√

Guest-assisted ×
√

×
√ √ √

Manual analysis
√

□
√

□ □ ×

Fully automated × × × × □
√

Machine learning techniques × × × × ×
√

Performance overhead 6% Varied □ Varied Varied 5.8%

□: Information are not explicitly mentioned in the previous work

Fig. 9. Performance overhead of AMMDS on PCMark05 in detecting hidden and
dubious state information of Monitored VM.

some benign andmalicious running processes to test the detection
feasibility of our proposed AMMDS. We practically confirmed that
VMI introspector of the AMMDS as being proficient in detecting
hidden and malicious processes caused by stealthy malware and
rootkits by traversing the semantic view of the _EPROCESS data
structure of the live Monitored VMs.

6.1. Comparison with existing work

In order to highlight the significance of our proposed AMMDS,
a comparison was undertaken in two phases. In the first phase, the
extended functionality of the AMMDS was compared with other
previous in-guest assisted and out-of-VM VMM-based malware
detection techniques. Table 8 we can see that the AMMDS is able
to detect and estimate the symptoms of malware with enhanced
functionality, which was not addressed in previous approaches.
Furthermore, functionalities such as the incorporation ofMFAwith
VMI, malicious check on detected hidden and dubious process

at the VMM, and fully automated and leveraging machine learn-
ing techniques for detection of known and unknown malware
were not presented in any of the previous VMI-based relevant
approaches.

In the second phase, the systematic evaluation of the pro-
posed AMMDS was compared with other VMM-based introspec-
tion and non-introspection malware detection and classification
approaches that used machine learning techniques. Table 7 sum-
marizes the comparison of the AMMDS with other related works.
To the best of our knowledge, except Watson et al. [65], none
of the VMM-based malware detection approaches used machine
learning techniques to detect malware. In particular, none of the
VMI-basedmalware detection approaches used themachine learn-
ing techniques to detect and classify malware on semantically
reconstructed high-level state information of live introspected
system from VMI perspective. Authors [65] proposed VMM-based
malware detection and classification system using one-class SVM
machine learning technique. The vectorial (feature) representation
of this approach not only considered the features related to the
processes, but also the network activity of the introspected VM
as statistical meta-features. In addition, this was not compared
with any of the public benchmarked datasets to quantify the clas-
sification accuracy of their system. Maximum malware detection
accuracy of this work was highlighted as more than 90%. Our
proposed AMMDS achieved up to an accuracy of 100% with 0 FPR
on the generated dataset at VMM-level.

To substantiate the effectiveness of the results, the proposed
AMMDS was also compared with non-VMM or non-introspection
based malware detection approaches. As a number of static and
dynamic (non-introspection) based works are presented in the
literature, we have chosen a relevant research with principal tar-
gets as feature extraction type and 96% or above accuracy and
FPR. Masud et al. [50] proposed hybrid feature selection technique
to detect malicious portable executables. The construction of the
hybrid feature set was based on the N-grams of the executables
feature, assembly instructions, and a dynamic link library. Overall,
this approach achieved 96.88% accuracy.
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Additionally, Shabtai et al. [53] used an opcode based feature
extractionmethods to detect unknownmalware using several ma-
chine learning classifiers. Their approachwas evaluated by consid-
ering a large number of benign andmalware datasets and achieved
greater than 96% of detection accuracy. Recently, in [54] authors
used Bytecode N-gram, opcode N-gram, and format features as
multi-view features to detect unseen malware using three ensem-
ble learning methods. They used two static malware datasets to
validate the proposed classification methodologies with 0% false
alarm rate.

Similarly, Zhanget et al. [67] have proposed a lightweight mal-
ware classification system using ensemble tree-based XGBoost,
ExtraTree, and GradientBoost as machine learning classification
algorithms to detect new and real-world malware. They combined
multiple categories of features that were extracted frommalicious
executables whereby the proposed approach would work even
on obfuscated and packed malware sample of different families.
The authors experimented their approachwithMicrosoft provided
‘‘Kaggle’’ malware challenge dataset and achieved 99.72% detec-
tion accuracy of malware.

In order to protect CPS against new malware variants re-
cently, Huda et al. [64] proposed semi-supervised approach. They
have used four supervised machine learning classifiers based on
the static and dynamic (run-time) malware executables feature
to evaluate classification methodologies. Finally, this approach
yielded up to 100% accuracy with zero FPR as similar to our
proposed approach. Some of the non-introspection based related
work mentioned in Table 7 achieved equivalent accuracy than
our proposed AMMDS. However, our approach is unique for the
detection of unknownmalware fromaVMIperspective at theVMM
with 100% detection accuracy.

7. Conclusion and future work

In this work, we have presented the design, implementation,
and evaluation of the AMMDS as an advanced VMI-based guest
assisted out-of-VM security solution that leverages both VMI and
MFA techniques to estimate symptoms of malware execution and
also able to accurately detect unknown malware (malicious ex-
ecutables) running on the CPS-based Monitored VM. The OMD
of the AMMDS is able to recognize known malware whereas the
OFMC is capable of detecting and classifying unknown malware
by using machine learning techniques. The proposed AMMDS ex-
tensively reduces the manual effort required to accurately identify
the malware from the semantically reconstructed and forensically
extracted executables as compared to other existing VMI and MFA
based out-of-VM approaches. Finally, the AMMDS was evaluated
against a large number of real-world Windows malware as well
as benign executables to measure the malware detection rate. Our
empirical results demonstrate that AMMDS is capable of recog-
nizing malware with an accuracy of 100%. Further, the observed
experimental results showed that the maximum performance of
overhead induced by the AMMDS is 5.8% under evaluation of the
Windows benchmark suite.

In future work, we aim to evaluate the AMMDS for the Linux-
based operating system to evaluate its detection rate against the
propagation of the sophisticated Linux malware.
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