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Abstract
Android-based smartphones are gaining popularity, due to its cost efficiency and various applications. These smartphones
provide the full experience of a computing device to its user, and usually ends up being used as a personal computer. Since
the Android operating system is open-source software, many contributors are adding to its development to make the interface
more attractive and tweaking the performance. In order to gain more popularity, many refined versions are being offered to
customers, whose feedback will enable it to be made even more powerful and user-friendly. However, this has attracted many
malicious code-writers to gain anonymous access to the user’s private data. Moreover, the malware causes an increase of
resource consumption. To prevent this, various techniques are currently being used that include static analysis-based detection
and dynamic analysis-based detection. But, due to the enhancement in Android malware code-writing techniques, some of
these techniques are getting overwhelmed. Therefore, there is a need for an effective Android malware detection approach for
which experimental studies were conducted in the present work using the static features of the Android applications such as
Standard Permissions with Application Programming Interface (API) calls, Non-standard Permissions with API-calls, API-
calls with Standard and Nonstandard Permissions. To select the prominent features, Feature Selection Techniques (FSTs) such
as the BI-Normal Separation (BNS), Mutual Information (MI), Relevancy Score (RS), and the Kullback-Leibler (KL) were
employed and their effectiveness was measured using the Linear-Support Vector Machine (L-SVM) classifier. It was observed
that this classifier achieved Android malware detection accuracy of 99.6% for the combined features as recommended by the
BI-Normal Separation FST.
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1 Introduction

Android malware, also known as Android malicious appli-
cation, which always is intended either to steal private or
confidential information or to harm the Android system.
Android-based smartphones have been gaining popularity
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since 2010 [1]. Due to the rapid evolution in Android-based
smartphones, malware writers have focused on this area
too [2]. There are varieties of Android malware available
in the market, such as ransomware, spyware, backdoor, tro-
jan, etc. In order to prevent malware penetration, Google
provides somemechanism to detectmaliciousAndroid appli-
cations during the time of application submission in the
application repository. Some of the Android applications
download the malicious contents after installation, so it
cannot be readily detected by Google’s Android malware
detection approach [3,4]. Two broad categories of security
techniques used to detect malicious Android applications are
static analysis-based detection and dynamic analysis-based
detection.

One of the popular static analysis-based detection tech-
niques is the signature-based detection technique. It accu-
rately detects the known malware, but is unable to perceive
new malware unless the corresponding signature is available
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in the signatures repository. To address thismajor issue,many
other Android malware detection techniques were proposed.
Each technique has its own merits and demerits. However,
Google always recommends the user to download Android
applications only from theGooglePlayStore,which also pro-
vides security over the applications during submission time
from the application developers. Due to the restricted nature
and device compatibility issue of theGoogle Play Store,most
of the users use the third party application stores to get access
to the applications. However, very few of these stores allow
the developers to place their applications after they have veri-
fied the absence of any threat. Thus, there is every possibility
of malicious applications getting downloaded onto the users
smartphones without their knowledge. Android applications,
which are verified either from the Google Play Store or third
party application stores does not necessarily guarantee the
application to be malware free [3,4].

The rest of the paper is organized as follows. Section 2 pro-
vides a brief description of the research work related to static
analysis of Android malware detection. Section 3 discusses
the proposed work, where static analysis and FSTs have been
described. Section 4 presents the performance evaluation.
Finally, Section 5 concludes the paper and presents the future
work.

2 Related work

As per the current literature survey, there are many appro-
aches available to detect Android malware from Android
applications. Some of these are behavioural-based [5–7]
or on-device anomaly detection [8,9], which is different
from the present approach. It performs off-device analysis
using static features with data mining techniques due to the
performance bottleneck issues of smartphones. The major
advantage of using static analysis is that it is free from mal-
ware involvement during analysis, i.e., the malware cannot
modify its behaviour during analysis [10–12].

Due to the failure of the signature-basedAndroidmalware
detection methods as mentioned in the Introduction, many
techniques such as the static and dynamic analysis have been
evolved to detect malicious Android applications [13–17].

Many authors have proposed static analysis. Majority of
the existing static analysis based Android malware detection
techniques use permissions and API-calls features, hence,
these features have also been considered for the presentwork.
Xiaoyan et al. [18] proposed an Android malware detection
technique using permissions as features. Principal Compo-
nent Analysis was used to select the prominent features.
Permissions-based Android malware detection techniques
are not efficient in detecting all kinds of Android malware
because while these are used in the manifest file, it may not
be required during runtime.

Zhu et al. [19] proposed an Android malware detection
technique considering the API-calls feature, which is used
to construct the API control flow graph. Three classification
algorithms ID3, Naive Bayes, and SVM were used, out of
which the SVM outperformed the others.

In static analysis, apart from considering individual fea-
tures, many authors have proposed Android malware detec-
tion techniques using a combination of features. Peiravian
and Zhu [20] and Chan and Song [21] proposed malware
detection techniques using permissions and API-calls fea-
tures of an Android application. The results have proved that
the combination of permissions andAPI-calls deliveredmore
detection accuracy comparedwith using themas independent
features.

Qiao et al. [22] have focused on static analysis by consid-
ering permissions andAPI-calls features, whichwere used as
binary and numerical features. The FSTs are used to improve
efficiency aswell as for dimensionality reduction. Three clas-
sifiers, Random Forest, Artificial Neural Network, and SVM
were used to assess the performance. According to their
results, the API-call features outperformed permissions fea-
tures in both binary and numerical representations. Also, the
numerical features provided better detection accuracy com-
pared with the binary features.

Aswini and Vinod [15] have used features namely permis-
sions, count of permission, hardware and software features
and API-calls to uncover the android malware. The FSTs
such as BNS, MI, RS, and KL were used in their work to
measure the detection ability of their proposed approach.

Some of the authors have also considered both, the static
and dynamic analysis both in their proposed methods. Su
et al. [23] proposed an Android malware detection tech-
nique,which used both static and dynamic analysis. For static
analysis, permissions and API-calls were used, while the
dynamic analysis used the system log files. Static analysis
was performed in on-device, while the dynamic analysis was
performed in the off-device sandbox server.

By considering the aforementioned approaches for
Android malware detection, an experimental work was per-
formed to compare the present method’s performance with
other existing methods (see Table 1). This is summarized in
the following paragraph.

• Using static analysis, standard and nonstandard permis-
sions were segregated from the manifest file, which was
combined with API-calls to prepare a combined features
set. Standard permissions are predefined in the official
Android library, whereas nonstandard permissions are
defined by the application developers.

• To select prominent features as to enhance efficiency,
four different FSTs as described in Section 3.3, have been
used.
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Table 1 Comparison of the Proposed Approach with Earlier Approaches

Method Features Feature Selection
Technique

Malware Dataset Detection Rate
Accuracy (%)

Our approach API+Standard Permis-
sions+Nonstandard-
Permissions

BNS, KL, MI, RS DREBIN 99.6

Android Malware Analysis [15] Permissions, Count of
Permissions, Hardware
Features, Software
Features, and API-calls

BNS, KL, MI, RS Not Mentioned 99.4

AndroDialysis [14] Android Intent and Android
Permissions

Not Mentioned DREBIN 95.5

Aided Android Malware
Classification [16]

Permissions and Source
Code Analysis

Not Mentioned MoDroid 95.6

Fig. 1 Android apk file content [24]

3 Proposedmethodology

Figure 1 shows the structure of the unpacked contents of the
Android application, where at the top is the AndroidMani-
fest.xml file, which provides a road map to the Java Virtual
Machine regarding the sequential running of the various
activities. Furthermore, it provides package information and
other components like broadcast receivers, services, activi-
ties, content providers, etc. From the AndroidManifest.xml
file, the standard permissions and nonstandard permissions
features will be extracted.

META-INF contains the MANIFEST, Certificate, and
SHA-1 digest for the corresponding line of MANIFEST.MF
file. The classes.dex iswhere the actual java source code of an
Android application is stored in bytecode format. The API-
call features will be extracted from this file. The res provides
a multimedia file for the application to support Graphical
User Interface rendering and the resources.arsc contains pre-
compiled resources.

3.1 Brief overview of proposed work

Figure 2 depicts the proposed flow diagram, where static
analysis has been used for Android malware detection. This
technique has been used, because an efficient as well as

a faster detection module has been proposed, which can
be achieved by monitoring the code characteristics of an
Android application. In contrast, to extract features from an
Android application using the dynamic analysis, the appli-
cation needs to execute, which takes significantly more time
comparedwith static analysis. In static analysis, the very first
step is to select a dataset consisting of uniform distribution
of benign and malware Android applications. To extract fea-
tures from an Android application, the application needs to
first decompiled. There are various decompiler tools avail-
able like AXMLPrinter2, apktool, Androguard, etc. For the
proposed work, apktool [25] was used for the decompilation.

Standard Permissions,Nonstandard Permissions andAPI-
calls features were extracted from the decompiled Android
applications. To select prominent features, four different
FSTs were used as depicted in Section 3.3. These features
were combined to prepare training files to train the classifiers.

3.2 Static analysis

In this analysis, the most popular features of an Android
application were taken in to consideration such as permis-
sions and API-calls, which were extracted from the Android-
Manifest.xml and classes.dex file, respectively. Before
extracting these features, firstly, the Android application
needed to be decompiled using the apktool [25]. Permissions
were extracted from the AndroidManifest.xml file under the
<uses-permission> tag. The Fig. 3 describes it for a sample
Android application file.

For the present work, standard and nonstandard per-
missions were segregated from permissions. Permissions,
which start with android.permission keyword, are treated
as standard permissions or otherwise as nonstandard per-
missions. Standard and nonstandard permissions segregated
from Fig. 3 are mentioned as follows.
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Fig. 2 Proposed operational flow diagram

Fig. 3 Permissions in
AndroidManifest.xml file

Standard Permissions

INTERNET
ACEESS_NETWORK_STATE
ACEESS_FINE_LOCATION

ACEESS_COARSE_LOCATION

Nonstandard permissions

C2D_MESSAGE
RECEIVE

INSTALL_SHORTCUT

To extract API-calls, traverse each subdirectory of smali
directory inside root package to get .smali files. From
each .smali file, search for an invoke keyword under the
Section .method and .end method. Figure 4 depicts the
aforementioned approach to get API-calls. First part of API-
calls represents class name, whereas second part represents
method name.

From Fig. 4, we have extracted two API-calls, which are
as follows.

android/app/Activity/getApplicationContext()
android/widget/RelativeLayout/init()

Following combinations of features have been considered
to prepare training files.

1. API-calls+Standard Permissions.
2. API-calls+Nonstandard Permissions.
3. API-calls+Standard Permission and Nonstandard Per-

mission.

3.3 Feature selection technique

To achieve better results, prominent features should be
selected using the FST. For the proposed work, four differ-
ent feature selection techniques were used, which are briefly
discussed as follows:

1. BI-Normal Separation (BNS) [15]

• This technique models frequency of a feature in each
document by using a random variable, which exceeds
the hypothetical threshold. The widespread rate of
the feature corresponds to the Area Under the Curve,
which crosses the threshold. The classification of a
feature for a particular class is decided by finding the
distance between the threshold, i.e., if the feature is
more commonly occurs in one class compared with
other classes, then its threshold will be further from
the tail of the curve.

• BNS=|F−1(TPR) − F−1(FPR)|
True Positive Rate (TPR)= (tp)

(tp+ f n)
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Fig. 4 Extraction of API-calls
from .smali file

False Positive Rate (FPR)= ( f p)
(tn+ f p)

where F−1 is the inverse Normal distributions cumu-
lative probability function.

• The BNS formula can be understand in expanded
form as follows:

BNS (t,Ci ) =
∣
∣
∣
∣
∣
F−1

(
NtCi

NCi

)

− F−1

(

NtC̄i

NC̄i

)∣
∣
∣
∣
∣

(1)

where again F−1 is the inverse Normal distributions
cumulative probability function.
Since this function explodes if NtCi /NCi = 0 or
NtC̄i

/NC̄i
= 0 so we set minimum rate to 5/10000,

and maximum rate to 1 - 5/10000.

2. Mutual Information (MI) [15,26].

• Following formula depicts mutual information:

∑

cε
{

C̄i ,Ci
}

∑

t

P(t, c)log

(
P(t, c)

P(t)P(c)

)

(2)

• It gives the extent to, which an attribute t reduces
the uncertainty in determining the appropriate class
C. P(t,c) is the joint cumulative distribution function,
P(t) andP(c) are themarginal probability for variables
t and c respectively.

3. Relevancy Score (RS) [15,27].

• The RS formula for feature t w.r.t. class Ci is shown
as follows.

RS (t,Ci ) = log

(

P (t |Ci ) + n

P
(

t̄ |C̄i
) + n

)

(3)

• This technique is based on the conditional probabil-
ities of a feature that are considered in the training
set. P (t |Ci ) represents the fraction of files in class
Ci contains feature t , P

(

t̄ |C̄i
)

represents the fraction

of files in class Ci not containing feature t and n rep-
resents number of files in class Ci contains feature
t .

4. Kullback-Leibler (KL) [15,28].

• The KL formula for feature t has been shown as fol-
lows.

K L (t) = −P
(

t |C̄i
)

log

(

P (t)

P
(

t |C̄i
)

)

−P (t |Ci ) log

(
P (t)

P (t |Ci )

)

(4)

• P
(

t |C̄i
)

represents the fraction of files not in class
Ci contains feature t , P (t |Ci ) represents the fraction
of files in class Ci contains feature t and P(t) is the
probability of an feature t considering all class.

4 Performance evaluation

4.1 Datasets used and classifier

A dataset is mandatory to carry out the experimental work.
For the malware, we have used Drebin dataset [29] and poly-
morphic and metamorphic malware dataset [30] containing
5600 and10500 samples, respectively,were used. For benign,
the third party applications were crawled to collect 8000
samples. From each category (benign and malware), 1500
samples were used for training the classifier.

Support Vector Machine is a supervised machine learning
algorithm and it is widely used in malware detection [16,
17,31]. It classifies the input test file based on the concept
of decision planes that define decision boundaries. Support
Vector Machine works very well even for unstructured and
semi structured data like text, images and trees. One of the
main strengths of the Support Vector Machine is kernel trick
which can be used to solve complex classification task with
an appropriate a kernel function. It scales relatively well to
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Table 2 Confusion Matrix

Class Name Prediction

Benign Malware

Benign True Positive (TP) False Negative (FN)

Malware False Positive (FP) True Negative (TN)

high dimensional data and also less susceptible to overfit-
ting. In this empirical study, Linear Support Vector Machine
(L-SVM) [32] was used as a classifier and 10-fold cross-
validation tests were used to measure the performance of the
L-SVM.

• Training filewas provided for training 3000 samples con-
taining a uniform distribution of benign and malware
Android applications.

• The training file was randomly partitioned into 10 equal
sized subsamples. From these subsamples, 9 subsamples
were used for training and one subsample for testing. This
procedurewas repeated for 10 rounds and each of the sub-
sample was used only once for testing the trained model.
Finally, the results from the 10-fold cross-validation tests
were averaged to declare the final detection accuracy.

For the present work, Accuracy, Precision, and Recall
were considered as the evaluation metrics as shown in Eq. 5.
Confusion metrics values shown in Table 2 are used to com-
pute the evaluation metrics.

Recall = TP

TP + FN
Precision = TP

TP + FP

Accuracy = TP + TN

TP + TN + FP + FN
(5)

True Positive (TP) represents the benign samples that are
correctly classified as benign. True Negative (TN) represents
the malware samples that are correctly classified as malware.
False Positive (FP) represents the malware samples that are
misclassified as benign. False Negative (FN) represents the
benign samples that are misclassified as malware.

4.2 Experimental results

Evaluation and results analysis of the proposed approach
are discussed in this Section. Each of the chosen FSTs
were evaluated with three different combinations of features
1) API-calls+ Standard Permission (A_S), 2) API-calls+
Nonstandard Permission (A_N), and 3) API-calls+ Stan-
dard and Nonstandard Permission features (A_M). Experi-
ments were conducted separately for the topmost features of
count (FC) in the range of 50 to 500 and it was in increments
of 50 as shown in Table 3. Finally, imperative features sets

of sizes 50 to 500 of A_S, A_N, and A_M recommended
by the each of the FSTs were considered to verify which
feature set influence the L-SVM classifier to achieve highest
accuracy. Table 3 depicts the performance achieved by the
L-SVM classifier for the combined features.

The first set of experiments was conducted with most sig-
nificant features of A_S, A_N, and A_M advised by the BNS
FST. From Table 3 we can notice that the L-SVM achieved
the highest accuracy of 99.6% for FC=150, FC=200, and
FC=450 features, respectively for suggested A_S feature
of BNS FST. However, when the FC=250, FC=400, and
FC=500 we noticed the second highest accuracy of 99.5%
was attained for theA_S features recommended byBNSFST.
Further, for the same A_S features, the accuracy yielded i.e.,
96.8%, 99.1%, 99.4%, and 99.4%, when FC=50, FC=100,
FC=300, and FC=350, respectively, was not appreciable.
Similarly, the same classifier performed pretty well on the
A_N features that are suggested by BNS FST while yield-
ing an accuracy of 99.6% for FC=200, FC=300, FC=350,
and FC=500. Contrarily, when the FC set with 100, 400, and
450, there was competitive performance and L-SVM classi-
fier attained the accuracy of 99.5%. The accuracy obtained
was not appreciable when FC set with 50, 150, and 250 for
A_N features, (see Table 3). Moreover, when the relevant
A_M features of different FC are considered as suggested
by BNS FST, the L-SVM recorded the highest accuracy of
99.6% for the FC=300 features. We can notice that L-SVM
classifier was equipotent and attained the accuracy of 99.5%
when FC set with 200, 250, and 500 A_M features were
considered. Meanwhile, the accuracy gained when FC=50,
FC=100, FC=150, FC=350, FC=400, and FC=450 was
not remarkable as depicted in Table 3.

The second sets of experiments were performed to exam-
ine the efficiency of L-SVM classifier for the best relevant
A_S, A_N, and A_M features suggested by KL FST. Appar-
ently, the highest accuracy of 98.8% was recorded for A_S
features when FC=450 are considered. In addition, the
experiments were pursued and when FC=500 L-SVM clas-
sifier obtained the second highest accuracy of 98.6% as
shown in Table 3. Similarly the experiments were conducted
for the different FC of 50, 100, 150, 200, 250, 300, 350,
and 400 of A_S features. However, the accuracy accom-
plished was less when compared with the FC=450 and
FC=500 of A_S features. Further, we could observe from
the Table 3 that when the topmost prominent A_N features of
different FC are taken into account, the maximum accuracy
obtained byL-SVMclassifierwas 99.1%when FC=400 and
FC=450. The second highest accuracy gained was 98.9%
when FC=350 and FC=500. Later, we can see from the
Table 3 thatwhenFC=250 theLear-SVMclassifier achieved
the very less accuracy of 98.7%. Subsequently, the L-SVM
classifier attained the minimum accuracy of 96.4%, 97.7%,
98.3%, and 98.5%, when FC=50, FC=100, FC=150, and
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Table 3 Accuracy achieved by
the L-SVM classifier under
10-fold Cross-Validation Tests

L-SVM Classifier

FST BNS KL MI RS

FC A_S A_N A_M A_S A_N A_M A_S A_N A_M A_S A_N A_M

50 96.8 96.9 93.6 96.1 96.4 95.9 96.1 96.3 95.9 92.4 91.6 92.6

100 99.1 99.5 99.4 97.7 97.7 96.7 96.2 97.4 96.3 94.4 96.9 94.9

150 99.6 99.4 99.3 98.4 98.3 97.4 97.5 97.9 96.9 96.6 98.1 96.9

200 99.6 99.6 99.5 98.4 98.5 98.1 98.3 98.5 97.9 96.8 98.4 97.7

250 99.5 99.4 99.5 98.3 98.7 98.4 98.4 98.5 98.3 97.4 98.4 97.8

300 99.4 99.6 99.6 98.3 98.8 98.8 97.9 98.6 98.4 97.1 98.6 98.2

350 99.4 99.6 99.4 98.5 98.9 98.7 98.2 98.8 98.4 97.7 98.8 98.2

400 99.5 99.5 99.4 98.5 99.1 98.6 98.7 99.1 98.6 98.0 98.8 98.2

450 99.6 99.5 99.3 98.8 99.1 98.8 98.8 99.1 98.8 98.1 99.0 98.4

500 99.5 99.6 99.5 98.6 98.9 98.7 98.5 98.9 98.8 98.5 98.9 98.6

Table 4 Precision Achieved by
the L-SVM classifier under
10-fold Cross-Validation Tests

L-SVM Classifier

FST BNS KL MI RS

FC A_S A_N A_M A_S A_N A_M A_S A_N A_M A_S A_N A_M

50 0.968 0.969 0.936 0.961 0.964 0.959 0.961 0.963 0.959 0.924 0.916 0.926

100 0.991 0.995 0.994 0.977 0.977 0.967 0.962 0.974 0.963 0.944 0.969 0.949

150 0.996 0.994 0.993 0.984 0.983 0.974 0.975 0.979 0.969 0.966 0.981 0.969

200 0.996 0.996 0.995 0.984 0.985 0.981 0.983 0.985 0.979 0.968 0.984 0.977

250 0.995 0.994 0.995 0.983 0.987 0.984 0.984 0.985 0.983 0.974 0.984 0.978

300 0.994 0.996 0.996 0.983 0.988 0.988 0.979 0.986 0.984 0.971 0.986 0.982

350 0.994 0.996 0.994 0.985 0.989 0.987 0.982 0.988 0.984 0.977 0.988 0.982

400 0.995 0.995 0.994 0.985 0.991 0.986 0.987 0.991 0.986 0.980 0.988 0.982

450 0.996 0.995 0.993 0.988 0.991 0.988 0.988 0.991 0.988 0.981 0.990 0.984

500 0.995 0.996 0.995 0.986 0.989 0.987 0.985 0.989 0.988 0.985 0.989 0.986

Table 5 Recall Achieved by the
L-SVM classifier under 10-fold
Cross-Validation Tests

L-SVM Classifier

FST BNS KL MI RS

FC A_S A_N A_M A_S A_N A_M A_S A_N A_M A_S A_N A_M

50 0.968 0.969 0.936 0.961 0.964 0.959 0.961 0.963 0.959 0.924 0.916 0.926

100 0.991 0.995 0.994 0.977 0.977 0.967 0.962 0.974 0.963 0.944 0.969 0.949

150 0.996 0.994 0.993 0.984 0.983 0.974 0.975 0.979 0.969 0.966 0.981 0.969

200 0.996 0.996 0.995 0.984 0.985 0.981 0.983 0.985 0.979 0.968 0.984 0.977

250 0.995 0.994 0.995 0.983 0.987 0.984 0.984 0.985 0.983 0.974 0.984 0.978

300 0.994 0.996 0.996 0.983 0.988 0.988 0.979 0.986 0.984 0.971 0.986 0.982

350 0.994 0.996 0.994 0.985 0.989 0.987 0.982 0.988 0.984 0.977 0.988 0.982

400 0.995 0.995 0.994 0.985 0.991 0.986 0.987 0.991 0.986 0.980 0.988 0.982

450 0.996 0.995 0.993 0.988 0.991 0.988 0.988 0.991 0.988 0.981 0.990 0.984

500 0.995 0.996 0.995 0.986 0.989 0.987 0.985 0.989 0.988 0.985 0.989 0.986

FC=200, respectively. For the A_M features recommended
by the KL FST, the L-SVM classifier yielded the highest
accuracy of 98.8% with FC=300 and FC=450 features.
Further, there was no significant improvement in the L-SVM

classifier accuracy after FC was set with 50, 100, 150, 200,
250, 350, 400, and 500.

The accuracy obtained by the L-SVM classifier for dif-
ferent features (A_S, A_M, and A_N) recommended by
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MI FST is provided in the Table 3. The L-SVM classifier
achieved the greatest accuracy of 98.8% when FC=450 for
the topmost features of A_S, suggested by MI FST. When
FC=400 the accuracy attained was 98.7%. Additionally, the
same classifier produced the least accuracy on other A_S
features of different FC such as 50, 100, 150, 200, 250, 300,
350, and 500. When predominant A_N features of FC=400
and FC=450 are considered, L-SVM classifier was able to
obtain maximum accuracy of 99.1%. However, in this case,
also accuracy obtained by L-SVM classifier on other A_N
features (for different FC) was not remarkable. Relatively,
when A_M features were considered the L-SVM classifier
outperformed by gaining the highest accuracy of 98.8%when
FC=450 andFC=500, respectively.Consecutively, L-SVM
classifier performed well for FC=400 of A_M features rec-
ommended by MI FST and achieved the accuracy of 98.6%.
In comparison, L-SVMclassifier produced the least accuracy
for various FC such as 50, 100, 150, 200, 250, 300, and 350
of A_M features, as depicted in Table 3.

Similar to the above experiments we examined the effi-
ciency of the L-SVM classifier by considering the features
such as A_S, A_N, and A_M recommended by RS FST in
obtaining better accuracy. From the obtained experimental
results, we could describe that the maximum stable accu-
racy achieved by the L-SVM classifier was significantly less
compared to the greatest accuracy achieved by the L-SVM
classifier for theA_S, A_N, andA_M features recommended
BNS, KL, and MI FST as depicted in the Table 3.

From Table 3, we could reasonably infer that BNS FST
is superior when compared to other three FSTs such KL,
MI, and RS that are considered in this experimental work.
As proof of concept, we achieved the highest detection
accuracy of 99.6% was accomplished for the A_S features
(when FC=150, FC=200, and FC=450), A_N features
(when FC=200, FC=300, and FC=500), and A_M fea-
tures (when FC=300), respectively.

Tables 4 and 5 depict the Precision and Recall achieved
by the L-SVM classifier, respectively. “Appendix A” shows
computation of Precision and Recall.

5 Conclusion

In this work, an Android malware detection technique was
implemented using static features, i.e., standard permissions,

Nonstandard Permissions andAPI-calls. These featureswere
extracted by using the apktool. After feature extraction, FSTs
were used to select prominent features. Finally, the training
files were built using a set of 3000 equal sized samples of
benign and malware to check the performance of the pro-
posed work.

Experimental results suggested that the combined fea-
tures were a better choice for Android malware detection
compared with individual features. For combined features,
three possibilities of combinations were considered for this
work, namely, the API-calls+Standard Permissions, API-
calls+Nonstandard Permissions, and API-calls+Standard
Permissions+Nonstandard Permissions. The highest detec-
tion accuracy of 99.6% was achieved by considering all the
combined features using the BI-Normal Separation FSTwith
the L-SVM classifier.

For future work, our whole concentration will be to detect
newly evolvingmalwares by adding up them into our dataset.

Appendix A

See Tables 6 and 7.

Table 6 Confusion Matrix values

Class Name No. of Files Prediction

Benign Malware

Benign 1500 1492 (TP) 8 (FN)

Malware 1500 6 (FP) 1494 (TN)

Table 7 Evaluation Metrics Values

Class Name TP Rate FP Rate Precision Recall

Benign 0.995 0.004 0.996 0.995

Malware 0.996 0.005 0.995 0.996

Weighted Average 0.995 0.005 0.995 0.995
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Calculation of precision

Precision Weighted Average = X ∗ XT + Y ∗ YT

XT + YT

Where X=Benign Files Precision, XT=Total number of
Benign Files, Y=Malware Files Precision, and YT=Total
number of Malware Files.

Precision Weighted Average = 0.996 ∗ 1500 + 0.995 ∗ 1500

1500 + 1500
Precision Weighted Average = 0.995

Calculation of recall

Recall Weighted Average = U ∗ UT + V ∗ VT

UT + VT

Where U=Benign Files Recall, UT=Total number of
BenignFiles,V=MalwareFilesRecall, andVT=Total num-
ber of Malware Files.

Recall Weighted Average = 0.995 ∗ 1500 + 0.996 ∗ 1500

1500 + 1500
Recall Weighted Average = 0.995.
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