

Execution Time Measurement of Virtual Machine
Volatile Artifacts Analyzers

Ajay Kumara M.A.

Department of Information Technology
National Institute of Technology Karnataka

Surathkal, Mangalore, India
ajayit13f01@nitk.edu.in

Jaidhar C.D.
Department of Information Technology

National Institute of Technology Karnataka
Surathkal, Mangalore, India

jaidharcd@nitk.edu.in

Abstract— Due to a rapid revaluation in a virtualization
environment, Virtual Machines (VMs) are target point for an
attacker to gain privileged access of the virtual infrastructure.
The Advanced Persistent Threats (APTs) such as malware,
rootkit, spyware, etc. are more potent to bypass the existing
defense mechanisms designed for VM. To address this issue,
Virtual Machine Introspection (VMI) emerged as a promising
approach that monitors run state of the VM externally from
hypervisor. However, limitation of VMI lies with semantic gap.
An open source tool called LibVMI address the semantic gap.
Memory Forensic Analysis (MFA) tool such as Volatility can also
be used to address the semantic gap. But, it needs to capture a
memory dump (RAM) as input. Memory dump acquires time and
its analysis time is highly crucial if Intrusion Detection System
IDS (IDS) depends on the data supplied by FAM or VMI tool. In
this work, live virtual machine RAM dump acquire time of
LibVMI is measured. In addition, captured memory dump
analysis time consumed by Volatility is measured and compared
with other memory analyzer such as Rekall. It is observed
through experimental results that, Rekall takes more execution
time as compared to Volatility for most of the plugins. Further,
Volatility and Rekall are compared with LibVMI. It is noticed
that examining the volatile data through LibVMI is faster as it
eliminates memory dump acquire time.

 Keywords—Hypervisor, Semantic gap, Intrusion Detection
System, Memory Forensic Analysis, Rootkit, Virtual Machine
Introspection.

I. INTRODUCTION
Virtualization technology has sprawl rapidly over the last

few years and it has been one of the most potent forces for
reshaping the traditional landscape of the computing devices
such as servers, desktop, networks, etc., Virtualization
facilitates sharing of physical computing resources among
different guest virtual machines by using special software
layer called hypervisor or Virtual Machine Monitor (VMM).
Virtualization platform becoming an attractive target for an
adversary due to easily accessible of virtual machines through
Cloud Service Provider (CSP) [1]. An adversary could design
and run a rootkit or malware that could alter the normal
behavior of the legitimate guest operating system either by
modifying System Call Table (SCT) or Interrupt Descriptor
Table (IDT) or some other critical operating system data
structure [2]. Later such malignant software can acquire the
control of virtual machine by evading existing defense
mechanism, e.g. anti-virus or agent based solution. Protecting

virtual machines from advanced, sophisticated malware or
threats is a highly exigent task for CSP.

The current generation of host-based, anti-malware
prevention systems are agent based, signature dependent and
they run inside the host machines. They are inadequate to
thwart against emerging advanced malware attack[17].
Similarly, they are ineffective for virtual environment as their
functionalities restricted only to a single system. In a
virtualized environment, hypervisor is able to manage the
multiple guest operating system[1]. Protecting individual guest
OS by placing Host based Intrusion Detection System (HIDS)
or anti-malware solution is ineffective. To overcome this
problem,Virtual Machine Introspection (VMI) [3],[4],[8],[9]
has emerged as fine-grained technique that provides complete
visibility of run state of the virtual machines at hypervisor.
The process of viewing the run state of the virtual machine
from hypervisor is named as VMI[3]. The main motivation
behind VMI is to scrutinize any abnormal change occurs
during run state of the virtual machine. Monitoring true state
of the virtual machine without compromising the performance
as well as without the knowledge of virtual machine is an
active research topic. Many proposed solutions have adopted
VMI to identify malignant activities of the virtual machine
[6],[5][18]. An open source VMI tool called LibVMI [7] is
able to provide run state of the live VM and also capable to
acquire live VM RAM dump.

RAM dump capture time and its analysis time in real time
are highly crucial if an IDS depends on data supplied by MFA
tool or VMI tool. Furthermore, memory analyzer accuracy is
also a primary for IDS. Thus, our aim is to 1). Measure the
time required to capture a live VM RAM dump using VMI
tool. 2). Measure the performance of the MFA tool such as
Volatility[12] in terms of execution time elapsed to analyze the
RAM dump of different size. 3). Compare the performance of
the Volatility with another open source MFA tool called
Rekall[14] in terms of execution speed. 4). Inject real world
rootkits onto the virtual machine in real time, view the internal
shape of the VM using VMI tool, capture the RAM dump and
analyze them using Volatility and Rekall separately to appraise
the detection accuracy.

The rest of the paper is structured as follows: Section II
provides background. Section III discusses related work.
Section IV describes the motivation to carry out this work.
Evaluation and experimental results are discussed in section V

2015 IEEE 21st International Conference on Parallel and Distributed Systems

1521-9097/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPADS.2015.47

314

2015 IEEE 21st International Conference on Parallel and Distributed Systems

1521-9097/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPADS.2015.47

314

Authorized licensed use limited to: Penn State University. Downloaded on November 15,2020 at 01:55:34 UTC from IEEE Xplore. Restrictions apply.

and finally conclusion and future work presented in section
VI.

II . BACKGROUND

A. Semantic Gap of Virtual Machine Introspection
The VMI has emerged as state-of-the-art technique as it is

able to provide the internal behavior of the target virtual
machine by examining volatile data [3][10]. As a result, it
helps to spot quickly the abnormality of the system due to
malware or intrusions. Run state of the virtual machine is able
to view externally using VMI. However, obtained state
information is in binary form 0's and 1's i.e., in raw form.
Extraction of high level information such as an active process
list, system calls, module list and network connections, etc.,
from raw data are referred as semantic gap of VMI
[5],[6],[18],[25] and it is the biggest challenge as it needs
knowledge of the guest operating system [6][24]. Fig.1.depicts
an overview of semantic gap. Internal view represents virtual
machine level observations, whereas the external view denotes
inspections at VMM. Strong isolation property of VMI resists
malware or threats.[11][16].

B. Rootkits
The Rootkits are a special type of malware that runs at the

highest privilege access of operating system (kernel ring '0')
by exploiting the security weakness present on the system.
They maintain a persistent and undetectable presence on the
victim system by hiding most privileged access to OS utility.
The rootkits deviates normal behavior of the system by
injecting malicious code into an operating system. A family of
rootkits is much sophosticated to compromise the OS kernel
by performing DKSM (Direct Kernel Structure Manipulation)
attack [22][23]. They have the capacity to foil or bypass In-
the-Box solution and the rootkits are often directly alter the
kernel memory using the /dev/kmem memory device.
Moreover, they also temper raw of kernel data structure.
Similarly, some rootkits are more potent to accomplish
Semantic Value Manipulation (SVM) attack [22] by
manipulating semantic data value of important kernel data
structure.

Fig. 1. Semantic Gap of Virtual Machine Introspection

C. Virtual Machine Introspection Tool: LibVMI
The LibVMI is a library that bridges the semantic gap

between VM and VMM [7][28] and it is an extended version
based on XenAccess Library. By operating at hypervisor, it is
able to provide run state of the target virtual machine
information like running processes list, module list, event
details. However, it needs few Guest Operating System (GOS)
details prior to introspection. For Linux GOS, it needs ostype,
sysmap, linux_tasks, linux_mm, linux_pid, linux_pgd.
Similarly, it needs information such as ostype, sysmap,
win_tasks, win_pdbase and win_pid for windows GOS. The
LibVMI also supports to capture the RAM dump of the target
virtual machine. MFA tool is needed to obtain run state of the
VM from RAM dump.

D. Memory Forensic Analysis Tool
MFA tools can also be used to address the semantic gap of

VMI[13]. A popular MFA opens source tool called
Volatility[12] is intelligent enough to analyze the RAM dump.
However, it is unable to capture the memory dump and it is
not an IDS. Thus, memory dump is required to capture before
the analysis. Intrusion detection is achieved only after careful
investigation of relevant fields present in the memory dump.
Similarly, Rekall[14] is another advanced open source memory
forensic framework historically forks with Volatility with
enhanced optimized performance. Both Volatility and Rekall
are matured enough to analyze Linux system memory dump as
well as a Windows system memory dump.

III. RELATED WORK
VM Introspection Based: The idea of VMI invented by

Garfinkel and Rosenblum [3] to detect intrusions during run
state of virtual machines by positioning IDS at the hypervisor.
This idea was implemented using the prototype Livewire [3].
Afterwards a number of solutions have proposed in this
direction for different aspects including malware detection
[15][16], memory forensics [10][21] etc.

The key challenge of VMI is semantic gap. The Virtuoso
[6] is one such approach to bridge the semantic gap of VMI by
automatically creating introspection tool that can semantically
extract meaningful information of guest virtual machine based
on low level data source. This is achieved by using dynamic
slicing algorithm. The main limitation of this technique is that
it is not fully automated and it requires minimal human effort.
The same approach extended and proposed with a name
VMST [5]. It addresses the semantic gap of VMI by enabling
automatic generation of secure introspection tool with a
number of new features and capabilities. It significantly
eliminates the limitation of Virtuoso i.e., involvement from
end users. The Virtuoso and VMST created more attention to
build a semantic gap, but they still limited to satisfy usefulness
and practicality of VMI[19]. Moreover, these techniques have
a high overhead to address the semantic gap when different
versions of the guest operating system offered by CSP. To
address this issue, “shadow context” based approach has
proposed to meet real world needs of VMI by significantly
improving the practical usefulness of VMI [19]. It encourages
one inspection program to inspect different version of the
guest virtual machine.

Virtual Machine 1

App

CPU NIC

Process Name
Process ID

Internal View
[Guest Virtual Machine]

External view
[Hypervisor View]

 Hypervisor

 CPU NIC

Semantic gap of VMI
(Converting binary (0, 1) into
to Meaning-full form at VMM

Example PID=920)

0101010101010101101010
1010100110101010101010

RAM

RAM

App

…

..

App

315315

Authorized licensed use limited to: Penn State University. Downloaded on November 15,2020 at 01:55:34 UTC from IEEE Xplore. Restrictions apply.

Memory Forensic Analysis (MFA) Based: forensic
memory community grappled VMI gap to analyze forensically
critical kernel relevant information from dump of physical
memory[13]. VMI based approach called Virtual Introspection
for XEN (VIX) captures the volatile data of the XEN virtual
machine [10] by pausing the target virtual machine till the
completion of acquisition then resumes the target virtual
machine. Suspension of target virtual machine functions
during the data acquisition process ensures the integrity of the
state information. In the same direction, few more work [20],
[21] has exposed the raw low level-byte artifacts of guest VM
memory to investigate relevant kernel data structure alteration
based on memory dump. The prototype called MOSS[2][26]
developed to extract the complete semantic view of the kernel
data structure that are altered by DKSM/SVM attack.

IV. MOTIVATION
Once the kernel level rootkit or advanced persistent

malware penetrate into the core of operating system kernel,
they can change the behavior of the legitimate system by
arbitrarily modifying the SCT or IDT or any other critical
kernel code and data structure. It is very difficult to detect
such changes if they occurs during run time of the system.
Some advanced rootkits or malware competent enough to
bypass or disable the anti-malware/HIDS to evade the
detection. One best solution to catch abnormality of the system
is by analyzing the RAM contents as it provides accurate state
of the system. For example, process list, loaded driver
modules, SCT , IDT details ect.

In a virtualized environment, one of the best ways of
examining the RAM contents of the virtual machine is via
VMI tool. For example LibVMI is proficient to provide the
internal shape of the target virtual machine like the active
process list, module list, event details, etc. In addition, it
supports to capture the RAM dump. However, LibVMI is not
rich enough to provide more kernel information due to its
limited functionalities as on today. The sophisticated DKOM
and SVM attacks based rootkits are more potent to alter the
guest kernel data structure. To view in-depth semantic
information of the virtual machine, another way is by
analyzing the RAM dump using MFA tool.

Without IDS, only viewing the internal state of the virtual
machine either through VMI tool or MFA tool is inadequate
to classify the system state is normal or abnormal.
Furthermore, without IDS, it is impractical to safeguard the
virtualized environment against malware attack or other types
of attacks. The prime requirement to safeguard the virtualized
environment round the clock is IDS. However, HIDS is an
ineffective solution for virtualized environments to thwart
advanced malware attacks. Thus, our proposed architectural
Hypervisor based Intrusion Detection System (HyIDS)
framework is the supreme solution to uncover abnormality of
the virtual machine by inspecting volatile data. The HyIDS
needs state of the virtual machine to classify the system state
as normal or abnormal. If HyIDS depends on the data supplied
by the VMI tool or MFA tool, the time needed to fetch the
state of the system by the VMI tool or MFA tool plays an
important role. Fig. 2 shows the high level architectural

 DOM-0 Ubuntu(DOMU-1) Win-7(DOMU-2)

framework of HyIDS based virtualized environment. The
HyIDS receives true state of the virtual machine either by
MFA tool or VMI tool. In this scenario, the time required to
fetch the real state of the virtual machine by reading volatile
data is highly crucial. With this motive in this work, we have
measured and compared the execution time of Volatility with
Rekall. Further, speed of LibVMI is compared with Volatility
and Rekall. Finally, we figure out which is the best feasible
solution to secure the virtulized environment while addressing
so called semantic gap.

V. EVALUATION AND EXPERIMENTAL RESULTS
We have evaluated the execution time of Volatility and

Rekall for the different RAM dump size of 1GB, 2GB and
3GB. Memory dump of both Linux virtual machine and
windows virtual machine captured using open source VMI
tool called LibVMI.

A. Experimental Setup
The experiments conducted on the host system which posses
the following specification: Intel (R) core(TM) i7-3770
CPU@ 3.40GHz, 20GB RAM, Ubuntu 14.04 (Trusty tahr)
(64-bit) operating system. The popular open source Xen 4.4
bare metal hypervisor had utilized to establish the virtualized
environment. To introspect and forensically investigate the run
state of the live virtual machine memory, we have created two
guest virtual machines of different operating system such as
Ubuntu 12.04.3-LTS as DOMU-1 and Windows-7SP0-64x as
DOMU-2 under Xen hypervisor. Both of them are managed by
DOM-0 management unit. Popular introspection tools such as
LibVMI version 0.10.1. installed on the most privileged
domain (DOM-0) of Xen hypervisor to introspect low-level
artifact's of the target virtual machine as well as to capture the
live RAM dump. LibVMI trap the hardware events and access
the vCPU registers while functioning at hypervisor. MFA
tools such as Volatility version 2.4 and Rekal version 1.3.2
(dammastack) employed to examine the captured RAM
dump.

Applcation

OS Kernel

Application

OS Kernel

 Hypervisor(Xen)

NIC DISKRAM

 Bare Hardware

VMI-Tool

Notification
ModuleHyIDS

Virtual RAM Virtual RAM

DUM-1

DUM-2

RAM-dump

Fig. 2. High level view of HyIDS Architecture on Virtualized Environment

FMA
Tools

MMU CPU

316316

Authorized licensed use limited to: Penn State University. Downloaded on November 15,2020 at 01:55:34 UTC from IEEE Xplore. Restrictions apply.

B. Virtual Machine RAM Dump Analysis using Volatility
and Rekall

Volatility is one of the most widely used open source
memory forensic tools used to extract digital artefact's from
volatile memory (RAM) samples. It offers a vast number of
built-in plug-ins to investigating different operating system
memory dump. This makes the Volatility to use extensively as
first choice for digital investigation of RAM samples.
Operating kernel data structure details are used during analysis
time and this detail made available to Volatility through the
profile. Windows operating system profiles are inbuilt
including recent windows-8-1. In case of Linux based
operating systems, Volatility requires user to create the profile
of respective Linux distribution before the RAM dump
analysis. This is due to continuous Linux kernel version
consistently updating.

We have a created profile for Ubuntu 12.04 virtual
machine and used the same profile during the experiments.
Live Ubuntu 12.04 virtual machine RAM dump of size 1GB,
2GB and 3GB has acquired using LibVMI. The captured RAM
dumps have analyzed using the Volatility Linux plugins such
as Linux_pslist, Linux_lsmode, Linux_arp, Linux_check_idt,
Linux_cpuinfo, Linux_dmesg, Linux_iomem, Linux_lsof,
Linux_netstat, Linux_psaux, Linux_pslist_calhe, Linux_pstree,
Linux_pstree. The same RAM dumps have also analyzed by
another memory analyzer called Rekall. Linux plugins name
of Rekall are as same as Volatility Linux plugins name.

We have compared Volatility Linux plugins execution time
with Reakll Linux plugins execution time to evaluate the
performance in terms of processing time. Fig 3, 4 and 5 depict
execution time taken by Volatility and Rekall for 1GB, 2GB
and 3GB RAM dump respectively. From the experimental
results, it is observed that Rekall execution time is more for
the following plugins Linux_pslist, Linux_lsmode, Linux_arp,
Linux_cpuinfo, Linux_dmesg, Linux_iomem, Linux_netstat,
Linux_psaux, Linux_pslist_calhe, Linux_pstree, as compared
to Volatality. However, Rekall processing time is faster for
Linux_check_idt, Linux_lsof, Linux_psview plugins as
compared to Volatility.

Some of the most common windows plugins of Volatility
and Rekall are tested on Windows-7 virtual machine memory
dump of size 1GB, 2GB and 3GB were used to conduct the
experiments. Fig 6, 7 and 8 depicts an execution time taken by
Volatility and Rekall for 1GB, 2GB and 3GB RAM dump
respectively. Our experimental results demonstrate that Rekall
takes more time to execute the following plugins pslist, dlllist,
eventhooks, handles, ldmodules, malfind, modules, multiscan,
netscan, psscan, pstree, ssdt compared to Volatility.

Another major observation, we found that Volatility
reported time for the following plugins Linu_Syscall (110s),
Linux_lsof (85s) and Linux_mem(88s) is high compared to
other plugins. But, for the same plugins, execution time is
drastically reduced in Rekall.

C. Detecting Kernel Level Rootkits
To evaluate trustworthiness of live Virtual Machine

Introspection and memory forensic tool, we have injected
publically available [27] real world rootkis on both Windows

and Ubuntu guest VM. We have used seven linux kernel level
rootkit such as Simplerootkit[SR], Kbeast[KB],chkrootkit-
0.50[CK], avarage coder[AC], adore-ng[Adr-ng],open-
hijack[OH],getpid-hijack[G H] Windows operating system
based kernel rootkits called FU-rootkit [FU] and Hacker
Defender[HD] injected onto Windows-7 virtual machine.
Table1 provides rootkits explored in this work with the guest
operating system on which they were injected. We practilaly
explored that, the LibVMI is capable to detect injected rootkits
(malicious process ID, hidden modules, etc) on the live
running virtual machine. A more semantic information
extracted by MFA tools such as Volatility and Rekall on the
captured RAM dump of both Windows and Ubuntu.

As a first step of rooktit detection, true run state of the VM

viewed using module-list plugin of LibVMI while working at
hypervisor (DOM-0). As a proof of experimental results, we
have mentioned a live snapshot of average coder rootkit in the
Fig.9. Injected rootkit module successfully detected by
LibVMI whereas the same module was unable to view against
inspection carried at the virtual machine through lsmod
command. In Fig.9. The background GUI screenshot on the
right side shows the output of module-list plugin of LibVM in
which inserted rootkit module "rootkit" is visible whereas
same rootkit module is completely hidden against the
inspection executed at the infected virtual machine (DOMU-1)
through lsmod utility see foreground screenshot on the left
side The figure 10 and figure 11 presents the output of Linux-
lsmod plugin of Volatility and Rekall respectively.

Rootkits OS Functionalities Behavior
SR, AC, KB Ubuntu 12.04 lsmod, sys-call,ps, hf. DKSM/SVM

CK,AD-ng, Ubuntu 12.04 Sys-call,ps, mod, strg DKSM/SVM

OP, GH Ubuntu 12.04 Sys-call,PID-hijak, ps, DKSM/SVM

HD, FU Windows-7 Sys-call-hijak, ps, fl DKSM/SVM

SR: Simple Rootkit, AC: Avarage coder, KB: Kbeast, CK: Chkrootkit 0.50
OP:open-hijack GH: getpid-hijack, HD: Hacker Defender, FU-Fu rootkit,
AD-ng-Adore-ng

RAM
Dump
Size

LibVMI
Ubuntu 12.04

(GOS)

Volatility
Ubuntu 12.04

(GOS)

Rekall
Ubuntu 12.04

(GOS)
Process

List
Module

List
Process

List
Module

List
Process

List
Module

List
1GB 0.30s 0.22s 3.31s 3.69s 5.10s 4.19s
2GB 0.32s 0.29s 3.24s 3.85s 5.85s 4.89s
3GB 0.34s 0.34s 3.98s 4.12s 7.85s 5.01s

RAM
Dump
Size

LibVMI
Windows-7

(GOS)

Volatility
Windows-7

(GOS)

Rekall
Windows-7

(GOS)
Process

list
Module

list
Process

list
Module

list
Process

list
Module

list
1GB 0.32s 0.26s 2.25s 2.23s 8.76s 2.92s
2GB 0.38s 0.45s 2.58s 2.64s 10.97s 3.07s
3GB 0.41s 0.58s 2.68s 3.29s 11.8s 7.84s

Table 2: RAM Dump Analysis Time of UBUNTU Guest Virtual Machine

Table 3: RAM Dump Analysis Time of WINDOWS Guest Virtual Machine

Table1: Real World Rootkit Expriment under Guest Virtual Machines

317317

Authorized licensed use limited to: Penn State University. Downloaded on November 15,2020 at 01:55:34 UTC from IEEE Xplore. Restrictions apply.

.

0
2
4
6
8

10
12
14

Ti
m

es
 in

 S
ec

on
ds

Plugin Names

Volatility Rekall

0
2
4
6
8

10
12
14

Ti
m

es
 in

 S
ec

on
ds

Plugin Names

Volatility

0
2
4
6
8

10
12

Ti
m

es
 in

 S
ec

on
d

Plugin Names

Volatility Rekall

0
5

10
15
20
25

Ti
m

es
 in

 se
co

nd

Plugin Names

Volatility Rekall

0
5

10
15
20
25
30
35

Ti
m

es
 In

 s
ec

on
d

Plugin Name

Volatility rekall

0
5

10
15
20
25
30

Ti
m

es
 in

 se
ca

nd

Plugn Names

Volatility Rekall

Fig. 4. Analysis of Ubuntu 12.04 VM - 2GB RAM Dump

Fig. 5. Analysis of Ubuntu 12.04 VM - 3GB RAM Dump

 Fig. 6. Analysis of Windows-7SP0- 1GB RAM Dump

 Fig. 7. Analysis of Windows-7SP0- 2GB RAM Dump

Fig. 8. Analysis of Windows-7SP0- 3GB RAM Dump

Fig.11. AC Rootkit infected module extracted by Rekall from raw
of physical memory dump

Fig. 3. Analysis of Ubuntu 12.04 VM - 1GB RAM Dump

Fig.10. AC Rootkit hidden module extracted by Volatility from raw
of physical memory dump

Fig.9. AC Rootkit module hidden by an attacker at DOMU-1 VM the
same detected by out-of-the-box VMI solution LibVMI

318318

Authorized licensed use limited to: Penn State University. Downloaded on November 15,2020 at 01:55:34 UTC from IEEE Xplore. Restrictions apply.

From the figures 10 and 11, we can observe that both
Volatility and Rekall are capable to report correctly the hidden
kernel module of average coder "rootkit" from RAM dump.
The extraction speed of LibVMI, Volatility and Rekall for
pslist and module-list plugins is tabulated in table 2 and table
3. We can observe that LibVMI fetching speed is faster as
compared to Volatility and Rekall.

VI. CONCLUSION AND FUTURE WORK
One way to spot malicious activities of the virtual machine

is through viewing run state of the live virtual machine using
LibVMI. Alternate way is by analyzing RAM dump of the
virtual machine using MFA tool. In this work, the execution
speed of Volatility is measured and compared with Rekall. It is
noticed that the Rekall execution speed is slow for most of the
plugins as compared to Volatility. Both Volatility and Rekall
are capable to address the semantic gap by providing readable
information from RAM dump. However, they need memory
dump to initiate the analysis.

 The live virtual machine state information extraction
through Volatility and Rekall is slower as compared to LibVMI.
However, LibVMI is not matured enough to provide more
semantic state information. In other words, currently LibVMI
possessing limited to few plugins. As there is no memory
dump acquire time involved in VMI based approach (LibVMI),
speed of retrieving the data from volatile memory is faster as
compared to memory dump based approach (Volatility and
Rekall). In this context, the hyIDS get state information
quickly, which helps in determining the intrusions rapidly. As
future work, we plan to develop more program module for an
existing LibVMI tool to detect intrusions or malware that
strengthen virtualized environment.

References
[1]. Wesley Vollmar, Thomas Harris, Lowell Long,and Robert Green 2013,

"Hypervisor Security in Cloud Computing Systems" , ACM
Computing Surveys, Vol.0.No.0, Article 0, Publication Date 2014.

[2]. Aravind Prakash , Eknath Venkataramani , Heng Yin , Zhiqiang Lin,
"Manipulating semantic values in kernel data structures: Attack assess-
ments and implications", Proceedings of the 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), p.1-12, June 24-27, 2013

[3]. T. Garfinkel and M. Rosenblum., "A Virtual Machine Introspection
Based Architecture for Intrusion Detection", Proceedings of the Sympo-
sium on Network and Distributed Systems Security (SNDSS), pag-
es191-206, February 2003

[4]. Payne, B. D., Carbone, M., and Lee, "Secure and flexible monitoring of
virtual machines". In Proceedings of the 23rd Annual Computer Securi-
ty Applications Conference (ACSAC 2007).

[5]. FU, Y., AND LIN, Z. "Bridging the semantic gap in virtual machine
introspection via online kernel data redirection". ACM Transaction on
information Security. 16, 2 , 2013

[6]. B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, W. Lee "Virtuoso:
narrowing the semantic gap in virtual machine introspection" IEEE
Symposium on Security and Privacy (SP ’11), IEEE Computer Society,
Washington, DC, USA (2011), pp. 297–312

[7]. http://libvmi.com/
[8]. Florian Westphal , Stefan Axelsson , Christian Neuhaus , Andreas

Polze," VMI-PL: A monitoring language for virtual platforms using vir-
tual machine introspection", Digital Investigation: The International
Journal of Digital Forensics & Incident Response, 11, p.S85-S94, Au-
gust, 2014

[9]. D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, "Process out-grafting: an
efficient "out-of-vm" approach for fine-grained process execution
monitoring," in Proc. of the 18th ACM conference on Computer and
communications security (CCS'11), October 2011.

[10]. B. Hay, K. Nance, "Forensic examination of volatile system data using
virtual introspection", ACM SIGOPS Operating Systems Review, vol.
42(3) ISSN: 0163-5980 April 2008.

[11]. Xuxian Jiang , Xinyuan Wang , Dongyan Xu, "Stealthy malware detec-
tion through vmm-based "out-of-the-box" semantic view reconstruc-
tion", Proceedings of the 14th ACM conference on Computer and
communications security, November 02-October 31, 2007, Alexandria,
Virginia, USA

[12]. http://www.volatilityfoundation.org/
[13]. B. Dolan-Gavitt, B. Payne, and W. Lee, "Leveraging forensic tools for

virtual machine introspection", Technical Report; GT-CS-11-05, 2011.
[14]. http://www.rekall-forensic.com/
[15]. Jiang, X., Wang, X., and Xu, D. 2007. "Stealthy malware detection

through vmm-based out-of-the-box semantic view reconstruction", In
Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security (CCS’07). ACM, 128–138.

[16]. Dinaburg, A., Royal, P., Sharif, M., and Lee, W. 2008. "Ether: Malware
analysis via hardware virtualization extensions". In Proceedings of the
15th ACM Conference on Computer and Communications Security
(CCS’08). ACM, 51–62.

[17]. Kumara.M.A Ajay, Jaidhar C.D "Hypervisor and Virtual Machine
Dependent Intrusion Detection and Prevention System for Virtualized
Cloud Envoirnoment" 1st IEEE International Conference on Telemat-
ics and Future Generation Networks (TAFGEN2015) May 26-28,
2015 Kuala Lumpur, Malaysia

[18]. Yangchun Fu , Zhiqiang Lin, EXTERIOR: using a dual-VM based
external shell for guest-OS introspection, configuration, and recovery,
Proceedings of the 9th ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments, March 16-17, 2013, Houston,
Texas, USA

[19]. R. Wu, P. Chen, P. Liu, and B. Mao, "System Call Redirection: A Prac-
tical Approach to Meeting Real-world Virtual Machine Introspection
Needs," in DSN, Jun. 2014, pp. 1--12.

[20]. S. Garfinkel, P. Farrella, V. Roussev and G. Dinolt, (2009), "Bringing
science to digital forensics with standardised forensic corpora", Digital
Investigation 6 S2-S11.

[21]. A. Case, A. Cristina, L. Marziale, G. Richard and V. Roussev, "FACE:
Automated Digital Evidence Discovery and Correlation", in Proceed-
ings of the Eighth Annual DFRWS Conference, 2008

[22]. Aravind Prakash, Eknath Venkataramani, Heng Yin and Zhiqiang Lin.
"On the Trustworthiness of Memory Analysis —An Empirical Study
from the Perspective of Binary Execution" In IEEE Transactions on
Dependable and Secure Computing (TDSC), 2014

[23]. S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee,
and D. Xu. "DKSM: Subverting virtual machine introspection for fun
and profit". IEEE Symposium on Reliable Distributed Systems, 2010.

[24]. Bach, M. J. 1986. The Design of the UNIX Operating System. Prentice
Hall.

[25]. Peter M. Chen , Brian D. Noble, When Virtual Is Better Than Real,
Proceedings of the Eighth Workshop on Hot Topics in Operating Sys-
tems, p.133, May 20-22, 2001

[26]. Q. Feng, A. Prakash, H. Yin, and Z. Lin." Mace: High-coverage and
robust memory analysis for commodity operating systems", in Proceed-
ings of ACSAC'14 30th Annual Computer Security Applications Con-
ference

[27]. https://packetstormsecurity.com/
[28]. B. D. Payne. Simplifying Virtual Machine Introspection Using Lib-

VMI. Sandia Report, 2012.

319319

Authorized licensed use limited to: Penn State University. Downloaded on November 15,2020 at 01:55:34 UTC from IEEE Xplore. Restrictions apply.

