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Abstract— Due to a rapid revaluation in a virtualization 
environment, Virtual Machines (VMs) are target point for an 
attacker to gain privileged access of the virtual infrastructure. 
The Advanced Persistent Threats (APTs) such as malware, 
rootkit, spyware, etc. are more potent to bypass the existing 
defense mechanisms designed for VM. To address this  issue, 
Virtual Machine Introspection (VMI) emerged as a promising 
approach that monitors run state of the VM  externally from 
hypervisor. However, limitation of VMI lies with semantic gap. 
An open source tool called LibVMI address the semantic gap.  
Memory Forensic Analysis (MFA) tool such as Volatility can also 
be used to address the semantic gap. But, it needs to capture a 
memory dump (RAM) as input. Memory dump acquires time and 
its analysis time is highly crucial if Intrusion Detection System 
IDS (IDS) depends on the data supplied by FAM or VMI tool. In 
this work, live virtual machine RAM dump acquire time of 
LibVMI is measured. In addition, captured memory dump 
analysis time consumed by Volatility is measured and compared 
with other memory analyzer such as Rekall. It is observed 
through experimental results that, Rekall takes more execution 
time as compared to Volatility for most of the plugins. Further, 
Volatility and Rekall are compared with LibVMI. It is noticed 
that examining the volatile data through LibVMI is faster as it 
eliminates memory dump acquire time. 

 Keywords—Hypervisor, Semantic gap, Intrusion Detection 
System, Memory Forensic Analysis, Rootkit, Virtual Machine 
Introspection.   

I. INTRODUCTION 
Virtualization technology has sprawl rapidly over the last 

few years and it has been one of the most potent forces for 
reshaping the traditional landscape of the computing devices 
such as servers, desktop, networks, etc., Virtualization 
facilitates sharing of physical computing resources among 
different guest virtual machines by using special software 
layer called  hypervisor or Virtual Machine Monitor (VMM). 
Virtualization platform becoming an attractive target for an 
adversary due to easily accessible of virtual machines through 
Cloud Service Provider (CSP) [1]. An adversary could design 
and run a rootkit or malware that could alter the normal 
behavior of the legitimate guest operating system either by 
modifying System Call Table (SCT) or Interrupt Descriptor 
Table (IDT) or some other critical operating system data 
structure [2]. Later such malignant software can acquire the 
control of virtual machine by evading existing defense 
mechanism, e.g. anti-virus or agent based solution. Protecting 

virtual machines from advanced, sophisticated malware or 
threats is a highly exigent task for CSP.  

The current generation of host-based, anti-malware 
prevention systems are agent based, signature dependent and 
they run inside the host machines. They are inadequate to 
thwart against emerging advanced malware attack[17]. 
Similarly, they are ineffective for virtual environment as their 
functionalities restricted only to a single system. In a 
virtualized environment, hypervisor is able to manage the 
multiple guest operating system[1]. Protecting individual guest 
OS by placing Host based Intrusion Detection System (HIDS) 
or anti-malware solution is ineffective. To overcome this 
problem,Virtual Machine Introspection (VMI) [3],[4],[8],[9] 
has emerged as fine-grained technique that provides complete 
visibility of run state of the virtual machines at hypervisor. 
The process of viewing the run state of the virtual machine 
from hypervisor is named as VMI[3]. The main motivation 
behind VMI is to scrutinize any abnormal change occurs 
during run state of the virtual machine. Monitoring true state 
of the virtual machine without compromising the performance 
as well as without the knowledge of virtual machine is an 
active research topic.  Many proposed solutions have adopted 
VMI to identify malignant activities of the virtual machine 
[6],[5][18]. An open source VMI tool called LibVMI [7] is 
able to provide run state of the live VM and also capable to 
acquire live VM RAM dump. 

RAM dump capture time and its analysis time in real time 
are highly crucial if an IDS depends on data supplied by MFA  
tool or VMI tool. Furthermore, memory analyzer accuracy is 
also a primary for IDS. Thus, our aim is to 1). Measure the 
time required to capture a live VM RAM dump using VMI 
tool.  2). Measure the performance of the MFA tool such as 
Volatility[12] in terms of execution time elapsed to analyze the 
RAM dump of different size. 3). Compare the performance of 
the Volatility with another open source MFA tool called 
Rekall[14] in terms of execution speed. 4). Inject real world 
rootkits onto the virtual machine in real time, view the internal 
shape of the VM using VMI tool, capture the RAM dump and 
analyze them using Volatility and Rekall separately to appraise 
the detection accuracy. 

The rest of the paper is structured as follows: Section II 
provides background. Section III discusses  related work. 
Section IV describes the motivation to carry out this work. 
Evaluation and experimental results are discussed in section V 
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and finally conclusion and future work presented in section 
VI. 

 

II . BACKGROUND 

A.  Semantic Gap of Virtual Machine Introspection 
The VMI has emerged as state-of-the-art technique as it is 

able to provide the internal behavior of the target virtual 
machine by examining volatile data [3][10]. As a result, it 
helps to spot quickly the abnormality of the system due to 
malware or intrusions. Run state of the virtual machine is able 
to view externally using VMI. However, obtained state 
information is in binary form 0's and 1's i.e., in raw form. 
Extraction of high level information such as an active process 
list, system calls, module list and network connections, etc., 
from  raw data are referred as semantic gap of VMI 
[5],[6],[18],[25] and it is the biggest challenge as it needs 
knowledge of the guest operating system [6][24]. Fig.1.depicts 
an overview of semantic gap. Internal view represents virtual 
machine level observations, whereas the external view denotes 
inspections at VMM. Strong isolation property of  VMI resists 
malware or threats.[11][16]. 

B.  Rootkits 
The Rootkits are a special type of malware that runs at the 

highest privilege access of operating system (kernel ring '0') 
by exploiting the security weakness present on the system. 
They maintain a persistent and undetectable presence on the 
victim system by hiding most privileged access to OS utility. 
The rootkits deviates normal behavior of the system by 
injecting malicious code into an operating system. A family of 
rootkits is much sophosticated to compromise the OS kernel 
by performing DKSM (Direct Kernel Structure Manipulation) 
attack [22][23]. They have the capacity to foil or bypass In-
the-Box solution and the rootkits are often directly alter the 
kernel memory using the /dev/kmem memory device.  
Moreover,  they also temper raw of kernel data structure. 
Similarly, some rootkits are more potent to accomplish 
Semantic Value Manipulation (SVM) attack [22] by 
manipulating semantic data value of important kernel data 
structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Semantic Gap of Virtual Machine Introspection 

C.  Virtual Machine Introspection Tool: LibVMI 
The LibVMI is a library that bridges the semantic gap 

between VM and VMM [7][28] and it is an extended version 
based on XenAccess Library.  By operating at hypervisor, it is 
able to provide run state of the target virtual machine 
information like running processes list, module list, event 
details. However, it needs few Guest Operating System (GOS) 
details prior to introspection. For Linux GOS, it needs ostype, 
sysmap, linux_tasks, linux_mm, linux_pid, linux_pgd. 
Similarly, it needs information such as ostype, sysmap, 
win_tasks, win_pdbase and win_pid  for windows GOS. The 
LibVMI also supports to capture the RAM dump of the target 
virtual machine. MFA tool is needed to obtain run state  of the 
VM from RAM dump. 

D. Memory Forensic Analysis Tool 
MFA tools can also be used to address the semantic gap of 

VMI[13]. A popular MFA opens source tool called 
Volatility[12] is intelligent enough to analyze the RAM dump. 
However, it is unable to capture the memory dump and it is 
not an IDS. Thus, memory dump is required to capture before 
the analysis. Intrusion detection is achieved only after careful 
investigation of relevant fields present in the memory dump. 
Similarly, Rekall[14] is another advanced open source memory 
forensic framework historically forks with Volatility with 
enhanced optimized performance. Both Volatility and Rekall 
are matured enough to analyze Linux system memory dump as 
well as a Windows system memory dump. 

III.   RELATED WORK 
VM Introspection Based: The idea of VMI invented by 

Garfinkel and Rosenblum [3] to detect intrusions during run 
state of virtual machines by positioning IDS at the hypervisor. 
This idea was implemented using the prototype Livewire [3]. 
Afterwards a number of solutions have proposed in this 
direction for different aspects including malware detection 
[15][16], memory forensics [10][21] etc.    

The key challenge of VMI is semantic gap. The Virtuoso 
[6] is one such approach to bridge the semantic gap of VMI by 
automatically creating introspection tool that can semantically 
extract meaningful information of guest virtual machine based 
on low level data source. This is achieved by using dynamic 
slicing algorithm. The main limitation of this technique is that 
it is not fully automated and it requires minimal human effort. 
The same approach extended and proposed with a name 
VMST [5]. It addresses the semantic gap of VMI by enabling 
automatic generation of secure introspection tool with a 
number of new features and capabilities. It significantly 
eliminates the limitation of Virtuoso  i.e., involvement from 
end users. The Virtuoso  and VMST created more attention to 
build a semantic gap, but they still limited to satisfy usefulness 
and practicality of VMI[19]. Moreover, these techniques have 
a high overhead to address the semantic gap when different 
versions of the guest operating system offered by CSP. To 
address this issue, “shadow context” based approach has 
proposed to meet real world needs of VMI by significantly 
improving the practical usefulness of VMI [19]. It encourages 
one inspection program to inspect different version of the 
guest virtual machine. 
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Memory Forensic Analysis (MFA) Based: forensic 
memory community grappled VMI gap to analyze forensically 
critical kernel relevant  information from dump of physical 
memory[13]. VMI based approach called Virtual Introspection 
for XEN (VIX) captures the volatile data of the XEN virtual 
machine [10] by pausing the target virtual machine till the 
completion of acquisition then resumes the target virtual 
machine. Suspension of target virtual machine functions 
during the data acquisition process ensures the integrity of the 
state information. In the same direction, few more work [20], 
[21] has exposed the raw low level-byte artifacts of guest VM 
memory to investigate relevant kernel data structure alteration 
based on memory dump. The prototype called MOSS[2][26] 
developed to extract the complete semantic view of the kernel 
data structure that are altered by DKSM/SVM attack.  

 

IV.  MOTIVATION   
Once the kernel level rootkit or advanced persistent 

malware penetrate into the core of operating system kernel, 
they can change the behavior of the legitimate system by 
arbitrarily modifying the SCT or IDT or any other critical 
kernel code and data structure. It is very difficult to detect 
such changes if they occurs during run time of the system. 
Some advanced rootkits or malware competent enough to 
bypass or disable the anti-malware/HIDS to evade the 
detection. One best solution to catch abnormality of the system  
is by analyzing the RAM contents as it provides accurate state 
of the system. For example, process list, loaded driver 
modules, SCT , IDT details ect. 

In a virtualized environment, one of the best ways of 
examining the RAM contents of the virtual machine is via 
VMI tool. For example LibVMI is proficient to provide the 
internal shape of the target virtual machine like the active 
process list, module list, event details, etc. In addition, it 
supports to capture the RAM dump. However, LibVMI is not 
rich enough to provide more kernel information due to its 
limited functionalities as on today. The sophisticated DKOM 
and SVM attacks based rootkits are more potent to alter the 
guest kernel data structure. To view in-depth semantic 
information of the virtual machine, another way is by 
analyzing the RAM dump  using MFA tool.  

Without IDS, only viewing the internal state of the virtual 
machine either  through VMI tool or MFA tool is inadequate 
to classify the system state is normal or abnormal. 
Furthermore, without IDS, it is impractical to safeguard the 
virtualized environment against malware attack or other types 
of attacks. The prime requirement to safeguard the virtualized 
environment round the clock is IDS. However, HIDS is an 
ineffective solution for virtualized environments to thwart 
advanced malware attacks. Thus, our proposed architectural 
Hypervisor based Intrusion Detection System (HyIDS)  
framework is the supreme solution to uncover abnormality of  
the virtual machine by inspecting volatile data. The HyIDS 
needs state of the virtual machine to classify the system state 
as normal or abnormal. If HyIDS depends on the data supplied 
by the VMI tool or MFA tool, the time needed to fetch the 
state of the system by the VMI tool or MFA tool plays an 
important role.  Fig. 2 shows the high level architectural 
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framework of HyIDS based virtualized environment. The 
HyIDS receives true state of the virtual machine either by 
MFA tool or VMI tool. In this scenario, the time required to 
fetch the real state of the virtual machine by reading volatile 
data is highly crucial. With this motive in this work, we have 
measured and compared the execution time of  Volatility with 
Rekall.  Further, speed of LibVMI  is compared with Volatility 
and Rekall. Finally, we figure out which is the best feasible 
solution to secure the virtulized environment while addressing 
so called semantic gap. 

V.  EVALUATION AND EXPERIMENTAL RESULTS 
We have evaluated the execution time of Volatility and 

Rekall for the different RAM dump size of 1GB, 2GB and 
3GB. Memory dump of both Linux virtual machine and 
windows virtual machine captured using open source VMI 
tool called LibVMI. 

A.  Experimental Setup 
The experiments conducted on the host system which posses 
the following specification: Intel (R) core(TM) i7-3770 
CPU@ 3.40GHz, 20GB RAM, Ubuntu 14.04 (Trusty tahr) 
(64-bit) operating system. The popular open source Xen 4.4 
bare metal hypervisor had utilized to establish the virtualized 
environment. To introspect and forensically investigate the run 
state of the live virtual machine memory, we have created two 
guest virtual machines of different operating system such as 
Ubuntu 12.04.3-LTS as DOMU-1 and Windows-7SP0-64x as 
DOMU-2 under Xen hypervisor. Both of them are managed by  
DOM-0 management unit. Popular introspection tools such as 
LibVMI version 0.10.1. installed on the most privileged 
domain (DOM-0) of Xen hypervisor to introspect low-level 
artifact's of the target virtual machine as well as to capture the 
live RAM dump. LibVMI trap the hardware events and access 
the vCPU registers while functioning at hypervisor. MFA 
tools such as Volatility version 2.4 and Rekal version 1.3.2 
(dammastack) employed to examine the  captured RAM 
dump.   
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B.   Virtual Machine RAM Dump Analysis using Volatility 
and  Rekall 

Volatility is one of the most widely used open source 
memory forensic tools used to extract digital artefact's from 
volatile memory (RAM) samples. It offers a vast number of 
built-in plug-ins to investigating different operating system 
memory dump. This makes the Volatility to use extensively as 
first choice for digital investigation of RAM samples.  
Operating kernel data structure details are used during analysis 
time and this detail made available to Volatility through the 
profile. Windows operating system profiles are inbuilt 
including recent windows-8-1. In case of Linux based 
operating systems,  Volatility requires user to create the profile 
of respective Linux distribution before the RAM dump 
analysis. This is due to continuous Linux kernel version 
consistently updating.   

We have a created profile for Ubuntu 12.04 virtual 
machine and used the same profile during the experiments. 
Live Ubuntu 12.04 virtual machine RAM dump of size 1GB, 
2GB and 3GB has acquired using LibVMI. The captured RAM 
dumps have analyzed using the Volatility Linux plugins such 
as Linux_pslist, Linux_lsmode, Linux_arp, Linux_check_idt, 
Linux_cpuinfo, Linux_dmesg, Linux_iomem, Linux_lsof, 
Linux_netstat, Linux_psaux, Linux_pslist_calhe, Linux_pstree,  
Linux_pstree. The same RAM dumps have also analyzed by 
another memory analyzer called Rekall.  Linux plugins name 
of Rekall are as same as Volatility Linux plugins name.  

We have compared Volatility Linux plugins execution time 
with Reakll Linux plugins execution time to evaluate the 
performance in terms of processing time. Fig 3, 4 and 5 depict 
execution time taken by Volatility and Rekall for 1GB, 2GB 
and 3GB RAM dump respectively. From the experimental 
results, it is observed that  Rekall execution time  is more for 
the following plugins Linux_pslist, Linux_lsmode, Linux_arp, 
Linux_cpuinfo, Linux_dmesg, Linux_iomem, Linux_netstat, 
Linux_psaux, Linux_pslist_calhe, Linux_pstree,  as compared 
to Volatality.  However, Rekall processing time is faster for 
Linux_check_idt, Linux_lsof, Linux_psview plugins as 
compared to Volatility. 

Some of the most common windows plugins of Volatility 
and Rekall are tested on Windows-7 virtual machine memory 
dump of size 1GB, 2GB and 3GB were used to conduct the 
experiments. Fig 6, 7 and 8 depicts an execution time taken by 
Volatility and Rekall for 1GB, 2GB and 3GB RAM dump 
respectively. Our experimental results demonstrate that Rekall 
takes more time to execute the following plugins pslist, dlllist, 
eventhooks, handles, ldmodules, malfind, modules, multiscan, 
netscan, psscan, pstree, ssdt compared  to Volatility.  

Another major observation, we found that Volatility 
reported time for  the following plugins  Linu_Syscall (110s ), 
Linux_lsof (85s) and Linux_mem(88s) is high compared to 
other plugins. But, for the same plugins, execution time is 
drastically reduced in Rekall. 

C.  Detecting Kernel Level Rootkits 
To evaluate trustworthiness of live Virtual Machine 

Introspection  and memory forensic tool, we have injected 
publically available [27] real world rootkis on both Windows 

and Ubuntu guest VM. We have used seven linux kernel level 
rootkit such as  Simplerootkit[SR], Kbeast[KB],chkrootkit-
0.50[CK], avarage  coder[AC], adore-ng[Adr-ng],open-
hijack[OH],getpid-hijack[G H] Windows operating system 
based kernel rootkits called FU-rootkit [FU] and Hacker 
Defender[HD] injected onto Windows-7 virtual machine. 
Table1 provides rootkits explored in this work with the guest 
operating system on which they were injected. We practilaly 
explored that, the LibVMI is capable to detect injected rootkits 
(malicious process ID, hidden modules, etc) on the live 
running virtual machine. A more semantic information 
extracted by MFA tools such as Volatility and Rekall on the 
captured RAM dump of both Windows and Ubuntu. 

 
As a first step of rooktit detection, true run state of the VM 

viewed using module-list plugin of LibVMI while working at 
hypervisor (DOM-0). As a proof of experimental results,  we 
have mentioned a live snapshot of average coder rootkit in the 
Fig.9. Injected rootkit module successfully detected by 
LibVMI whereas the same module was unable to view against 
inspection carried at the virtual machine through lsmod 
command. In Fig.9. The background GUI screenshot on the 
right side shows the output of module-list plugin of LibVM in 
which inserted rootkit module "rootkit" is visible whereas 
same rootkit module is completely hidden against the 
inspection executed at the infected virtual machine (DOMU-1) 
through lsmod utility see foreground screenshot on the left 
side The figure 10 and figure 11 presents the output of Linux-
lsmod plugin of Volatility and Rekall respectively. 

 

Rootkits OS Functionalities Behavior 
SR, AC, KB Ubuntu 12.04 lsmod, sys-call,ps, hf. DKSM/SVM 

CK,AD-ng, Ubuntu 12.04 Sys-call,ps, mod, strg DKSM/SVM 

OP, GH Ubuntu 12.04 Sys-call,PID-hijak, ps, DKSM/SVM 

HD, FU Windows-7 Sys-call-hijak, ps, fl DKSM/SVM 

SR: Simple Rootkit, AC: Avarage coder, KB: Kbeast, CK: Chkrootkit 0.50 
OP:open-hijack GH: getpid-hijack, HD: Hacker Defender, FU-Fu rootkit,  
AD-ng-Adore-ng 
 
 

RAM  
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Volatility 
Ubuntu 12.04 

(GOS) 

Rekall 
Ubuntu 12.04 

(GOS) 
Process 

List 
Module 

List 
Process 

List 
Module 

List 
Process 

List 
Module 

List 
1GB 0.30s 0.22s 3.31s 3.69s 5.10s 4.19s 
2GB 0.32s 0.29s 3.24s   3.85s 5.85s 4.89s 
3GB 0.34s 0.34s 3.98s   4.12s 7.85s 5.01s 

 

 

 

RAM  
Dump 
Size 

LibVMI 
Windows-7  

(GOS) 

Volatility 
Windows-7 

(GOS) 

Rekall 
Windows-7 

(GOS) 
Process 

list 
Module 

list 
Process 

list 
Module 

list 
Process 

list 
Module 

list 
1GB 0.32s 0.26s 2.25s 2.23s 8.76s 2.92s 
2GB 0.38s 0.45s 2.58s 2.64s 10.97s 3.07s 
3GB 0.41s 0.58s 2.68s 3.29s 11.8s 7.84s 

 

Table 2:  RAM Dump Analysis Time of  UBUNTU Guest Virtual Machine 

Table 3:  RAM Dump Analysis Time of  WINDOWS  Guest Virtual Machine

Table1: Real World  Rootkit Expriment under Guest Virtual  Machines 
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Fig. 4. Analysis of Ubuntu 12.04 VM - 2GB RAM Dump 

Fig. 5. Analysis of Ubuntu 12.04 VM - 3GB RAM Dump 

   Fig. 6.  Analysis of Windows-7SP0- 1GB RAM Dump  

   Fig. 7.  Analysis of Windows-7SP0- 2GB RAM Dump  

Fig. 8. Analysis of Windows-7SP0- 3GB RAM Dump 

Fig.11. AC Rootkit infected   module  extracted by Rekall   from  raw 
of  physical memory dump 

Fig. 3. Analysis of Ubuntu 12.04 VM - 1GB RAM Dump 

Fig.10. AC Rootkit  hidden module  extracted by Volatility  from  raw 
of  physical memory dump

Fig.9. AC Rootkit module hidden by  an attacker at DOMU-1 VM  the 
same detected by  out-of-the-box VMI solution  LibVMI 
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From the figures 10 and 11, we can observe that both 
Volatility and Rekall are capable to report correctly the hidden 
kernel module of average coder "rootkit" from RAM dump. 
The extraction  speed of LibVMI, Volatility  and  Rekall  for  
pslist and module-list plugins is tabulated in table 2 and table 
3. We can observe that LibVMI fetching speed is faster as 
compared to Volatility and Rekall.   

VI. CONCLUSION AND FUTURE WORK  
One way to spot malicious activities of the virtual machine 

is through viewing run state of the live virtual machine using 
LibVMI.  Alternate way is by analyzing RAM dump of the 
virtual machine using MFA tool. In this work, the execution 
speed of Volatility is measured and compared with Rekall. It is 
noticed that the Rekall execution speed is slow for most of the 
plugins as compared to Volatility. Both Volatility and Rekall 
are capable to address the semantic gap by providing readable 
information from RAM dump. However, they need memory 
dump to initiate the analysis. 

 The live virtual machine state information extraction 
through Volatility and Rekall is slower as compared to LibVMI. 
However, LibVMI is not matured enough to provide more 
semantic state information. In other words, currently LibVMI 
possessing limited to few plugins. As there is no memory 
dump acquire time involved in VMI based approach (LibVMI), 
speed of retrieving the data from volatile memory is faster as 
compared to memory dump based approach (Volatility and 
Rekall). In this context, the hyIDS get state information 
quickly, which helps in determining the intrusions  rapidly. As 
future work, we plan to develop more program module for an 
existing LibVMI tool to detect intrusions or malware that 
strengthen  virtualized environment. 
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