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Abstract—Currently, the Internet faces serious threat from
malwares, and its propagation may cause great havoc on comput-
ers and network security solutions. Several existing anti-malware
defensive solutions detect known malware accurately. However,
they fail to recognize unseen malware, since most of them
rely on signature-based techniques, which are easily evadable
using obfuscation or polymorphism technique. Therefore, there
is immediate requirement of new techniques that can detect and
classify the new malwares. In this context, heuristic analysis is
found to be promising, since it is capable of detecting unknown
malwares and new variants of current malwares. The N-Gram
extraction technique is one such heuristic method commonly used
in malware detection. Previous works have witnessed that shorter
length N-Grams are easier to extract. In order to identify and
remove noisy N-Grams, a popular Feature Selection Technique
(FST), namely, Information Gain (IG), which computes score
for each N-Gram (feature) in the dataset has been used in
this work. N-Grams with the highest IG score are considered
as best features, while the remaining N-Grams are neglected.
The IG-FST (Information Gain-Feature Selection Technique) is
computational resource demanding and takes time to generate
IG scores for larger N-Gram datasets, if the processing is to be
accomplished in the sequential mode. To address this issue, the
present work presents a multiprocessing model that computes
IG scores rapidly for larger N-Gram datasets. The proposed
model has been designed, implemented, and compared with the
sequential mode of IG score computation. The experimental
results demonstrate that the proposed multiprocessing model
performance is 80% faster than the sequential model of IG score
computation.

Keywords—Malware Detection, Machine Learning, N-Grams,
Information Gain.

I. INTRODUCTION

Malware is one of the biggest threats to modern computers
and cyber infrastructures, as its severity is increasing year by
year and infecting computer systems or computer networks,
which are susceptible. Generally, the detection of an unknown
malware is difficult since many of the modern malwares are
built with obfuscation characteristics, which can elude many
standard signature-based anti-malware systems. Due to this,
malware analysts fail to identify unknown malwares. To assist
them, new malware detection methods are being invented by
computer researchers [1].

The malware recognition strategy is broadly categorized
into two types: signature-based approach and behavior-based
approach. The signature-based approach employs a pattern

matching technique to match the sequence of binary instruc-
tions with the regular expression. However, it can be easily
evaded by the obfuscations technique, if the computer system
is highly vulnerable [2]. On the other hand, the behavior-
based approach utilizes machine learning techniques to detect
malwares and is capable of detecting both static and dynamic
behaviors of the malware, even if the code is obfuscated. Thus,
it is more widely adopted than the signature-based approach
[3]. Nevertheless, it fails to balance between false positive rate
and malware detection rate [4].

Soon after the idea of heuristic-based method was used to
detect malwares through N-Grams generated from a given set
of benign and malware files. The N-Grams were used as a
basic feature by the classifier to distinguish between benign
and malware files [5]. However, all N-Grams cannot be used
as prominent features to prepare a classifier understandable
training or testing file. This is due to the fact that the malware
detection rate of the classifier purely depends on the final
features supplied in the training file. FST plays an important
role in generating a score for each N-Gram, which helps to
select the best features based on the score. FST takes an
enormous amount of time to produce a score, when the total
numbers of N-Grams are more in the original feature set.

To address the issue of computing the score quickly, we
present in this paper, a multiprocessing model that computes
an IG score for each N-Gram. The proposed multiprocessing
model is capable of computing the IG score of any large
N-Gram dataset of any length of N-Grams, for example,
N=2, N=3, N=4, etc. The proposed multiprocessing model
is implemented, validated, and compared with the sequential
model of IG score computation.

The rest of the paper is structured as follows: In Section
II, we study the background of N-Gram techniques used to
detect the malware, and review earlier research works related
to malicious executable file detection. In Section III, we
describe the proposed multiprocessing model. In section IV,
experimental results are discussed. Finally, in Section V, we
arrive at the conclusion.

II. BACKGROUND AND RELATED WORK

Malware analysis is the process of determining the presence
of malicious substances in the testing input file. However,
the timely discovery of new malware is still a critical issue.
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Several attempts were made with different techniques for
malware detection [6]. Currently, the analysis of malware is
performed in two ways: static analysis and dynamic analysis.
In static analysis, the malware is analyzed without executing
the malware. Static features such as Application Programming
Interface (API) calls, system calls, etc. are used to identify the
malware [7] [8]. These extracted features are used as basic
parameters by most of the anti-malware defensive solutions to
spot the malware. Static analysis is largely ineffective and can
be easily evaded by sophisticated malware, and sometimes, it
can miss some important behavior parameters of the malware
[9].

Dynamic malware analysis overcomes the limitations of
static malware analysis. It is also called as behavior analysis.
Dynamic malware analysis is normally performed in a sandbox
environment to avoid propagation of malware infection in the
productive system. There have been several dynamic malware
sandbox approaches proposed in literature that perform dy-
namic malware analysis using the sandbox technology [10]
[11] [12].

The common N-Gram analysis was one of the most success-
ful methods in case of text classification and text clustering
[5]. Inspired by the common N-Gram analysis method, the
N-Grams in the present context are used in digital forensics
for malware detection since it captures implicit features [16].
Byte-level N-Gram is found to be significant to extract relevant
features for malware classification, due to its robust func-
tionality. However, N-Gram underperforms from high feature
space and large computation time because of many generated
features, which cannot be accommodated in the main memory.
So, to advance the feature selection process, a new partition-
based method was introduced [13]. This method efficiently
converts the original dataset to separate partitions and enables
parallelism on different partitions. Consequently, an attempt
was made to improve the feature selection process by using
classifier called Elastic Net regularized Logistic Regression
[14]. This approach significantly addresses most issues on
N-Grams for feature selection process, i.e., N-Grams are
computationally expensive and manifest low performance with
more data.

In order to detect malware dynamically, many of the re-
cent techniques utilize N-Grams as the basic feature [15].
The idea of N-Gram was stimulated by a commonly known
method called word N-Gram. Word N-Gram is most widely
used in applications involving natural language processing,
speech recognition, text mining, and information retrieval.
Subsequently, a novel approach was put forth for effective
detection of malware based on invoked system call sequence
[10]. The collected system call sequence structured in the
form of N-Grams and N-Gram feature extraction technique
is widely used for different input sources [5] [15] [17]. The
N-Grams were selected from malware and benign files. The
N-Grams based approach outperforms when the experiment is
carried with a larger feature set. Recent reports [5] have shown
that IG-FST has produced best results in classifying malicious
executables files and benign executable files correctly.

In our proposed work, we have implemented a multiprocess-
ing model for computing the IG score for N-Grams of larger
datasets. The computation time taken by the multiprocessing
model and the sequential mode1 was measured to compare
the processing efficiency. The proposed approach proves to be
generic to significantly reduce the computation time involved,
while recommending the unique feature based feature selection
technique. We believe that the current evaluation of this
proposed approach validated against IG-FST will also work for
other FSTs to measure the score of unique feature computation
as required by a classifier.

III. PROPOSED WORK

In this work, the proposed multiprocessing model is de-
signed, implemented, and validated with a larger N-Gram
dataset. Benign N-Gram Files (BNFs) and Malware N-Gram
Files (MNFs) were both included in the N-Gram dataset,
where each N-gram file consists of more number of N-Grams.
For each N-Gram, the IG score was computed using the
steps depicted in Fig. 2. The IG score generation steps are
grouped into four phases: 1) Pre-processing Phase, 2) Chunks
Construction Phase, 3) Chunks to Process Allocation Phase,
and 4) IG Score Computation Phase

A. Pre-processing Phase

In this phase, the N-grams were generated by extracting
the binary instructions from both the benign and malware
executable files. This step is referred as the intermediate stage.
In this stage, the extracted binary instructions are continuously
placed in a row. Later, N-Grams of different feature lengths
are generated such as NGL = 2 bytes, NGL = 3 bytes, NGL

= 4 bytes, etc. based on the length specified by the user to
create BNFs and MNFs. Subsequently, in order to get the
highest order sequence and better selection of N-Grams, the
created BNF and MNF were arranged in non-increasing order
by removing any duplicates, if found. The generation of BNF
and MNF are illustrated in Fig. 1.

The generation of BNF and MNF is a very important step
since it is the start-up step or is defined as the input for the
proposed multiprocessing model. The next step involves the
union operation on the BNFs (B1, B2, B3 . . . Bn) and MNFs
(M1, M2, M3 . . . Mn) individually on both the categories,
benign and malware, to identify and remove redundant N-
Grams. After the union operation, Unique Benign N-Gram
File (UBNF) and Unique Malware N-Gram File (UMNF) are
obtained as shown in Fig. 2.

B. Chunks Construction Phase

The UBNF and UMNF consist of a large number of N-
Grams, and computing the IG score for each N-Gram in the
UBNF and UMNF sequentially is computational resource de-
manding. To reduce this, a multiprocessing model is proposed
in this work that computes the IG score for each N-Gram. In
this phase, the UBNF is divided into files of smaller benign N-
Gram files [Benign N-Gram Chunk (BNC)], namely, BNC1,
BNC2, BNC3, BNC4. . . BNCn, and similarly, the UMNF is
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Fig. 1: Generation of Benign N-Gram Files and Malware N-Gram Files

divided into smaller malware N Gram files [Malware N-Gram
Chunk (MNC)], namely, MNC1, MNC2, MNC3, MNC4. . .
MNCn as shown in Fig. 2. A pair of chunks (BNC1, MNC1),
(BNC2, MNC2) . . . (BNCn, MNCn) is assigned to a created
process. Each benign chunk N-Gram file and malware chunk
N-Gram file consists of a fixed number of N-Grams. The
number of N-Grams to be present in each BNC file and MNC
file is to be of a constant value as specified by the user, and
accordingly, the generation of chunk files takes place.

C. Chunks to Process Allocation Phase

In this phase, one chunk file from both benign and malware
categories is accessed sequentially and assigned to the process.
The distribution of the number of chunk pairs to each process
is calculated as per the equation given below:

Distribution of chunk pair to each process =

Highest number of chunks made either

from benign or malware category

No. of process

(1)

D. IG Computation Phase

To compute the IG score, each process follows the following
steps:

• The union operation is conducted on each pair of benign
and malware chunk N-Gram files to recognize the occur-
rence of the same N-Gram.

• If observed, similar occurrences of N-Gram are removed
after performing the union operation.

• Finally, a unique N-Gram file is prepared.

Each N-Gram from the unique N-Gram file is accessed to
check its existence in all BNFs and MNFs to compute the IG
score using the following equation:

IG(N −Gram) =
∑

vN−Gram∈{0,1}

∑
C∈{Ci}

P (vN−Gram, C)

log
P (vN−Gram, C)

P (vN−Gram), P (C)
(2)

Where, C is one of the two categories - benign or malware,
vN−Gram is the value of the N-Gram; vN−Gram = 1 indicates
the presence of N-Gram in either of the N-Gram files and
vN−Gram = 0, otherwise; P(vN−Gram, C) is the proportion
of N-Gram files in C in which case, the N-Gram takes on the
value vN−Gram; P(vN−Gram) is the proportion of benign or
malware N-Gram files in the entire training set such that N-
Gram takes the value vN−Gram; and P(C) is the proportion of
datasets belonging to category C. The N-Grams are organized
in non-increasing order based on the IG score and the topmost
L numbers of N-Grams are extracted as best features for the
purpose of classification.

IV. EXPERIMENT RESULTS
The experimental datasets consists of two types: benign

dataset and malware dataset. The benign dataset is a collection
of non-malicious executable files, whereas the malware dataset
is a collection of malicious executable files obtained from
public source 1. For the purpose of the experiments, ten benign
files and ten malware files were considered. The length of
the N-Grams was fixed for four bytes to generate the BNFs
and MNFs. Three processes were created to demonstrate the
multiprocessing model to compute the IG score.

Furthermore, as per the explanation in section III, the
generated BNFs and MNFs underwent union operation, and
then, the N-Grams were sorted in non-increasing order and
duplicate N-Grams were removed, if observed to obtain UBNF
and UMNF. The generated UBNF and UMNF in this experi-
ment consists of 414606 N-Grams of the benign category and
2475931 N-Grams of the malware category.

1https://malwr.com/
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Fig. 2: Multiprocessing model to compute Information Gain score
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TABLE I: Information Gain score computation time

Benign

N-Gram

Files

Malware

N-Gram

Files

Unique

N-Grams File

Threshold Value for

Chunk Construction

No. of Chunk

Files Constructed

N-Gram Size (No. of

N-Grams x No. of Chunks)

Time Taken for IG

Score Computation in

Sequential Mode1

Time Taken for IG

Score Computation in

Multiprocessing Mode1

Benign Malware Benign Malware Benign Malware Benign Malware (Sec) (Sec)

10 10 414606 2475931 10000 10000 42 248 10000 x 3 10000 x 3 5244.857 1065.764

10 10 414606 2475931 15000 15000 28 166 15000 x 3 15000 x 3 7989.225 1513.592

10 10 414606 2475931 20000 20000 21 124 20000 x 3 20000 x 3 11006.653 2081.264

10 10 414606 2475931 25000 25000 17 100 25000 x 3 25000 x 3 13722.352 2684.321

10 10 414606 2475931 30000 30000 14 83 30000 x 3 30000 x 3 16688.499 3364.588

6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 4 0 0 0 0 1 6 0 0 0 0 1 8 0 0 0 0
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0
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1 8 0 0 0
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Fig. 3: Comparison between multiprocessing model and sequential model to compute Information Gain score

The proposed multiprocessing model was implemented us-
ing the Python programing language. It constructs the chunks
separately from the UNBF and UNMF based on the threshold
value set by the user. Then, the IG score for each N-Gram
is computed. In this work, N-grams chunks with varying
threshold values such as 10000, 15000, 20000, 25000, and
30000 were created to demonstrate the efficiency of the
proposed model. For the threshold value 10000, 42 benign
chunk files and 248 malware chunk files were obtained. For
other threshold values like 15000, 20000, 25000, and 30000,
benign chunks files of 28, 21, 17, and 14 and malware chunk
files of 166, 124, 100, and 83 were constructed and tabulated
in Table I. To demonstrate the efficiency of the multiprocessing
model against the sequential model, the first three pair of
chunk files from both categories of benign and malware files
were obtained for different threshold values such as 10000,
15000, 20000, 25000, and 30000.

When the threshold value was set to 10000, each chunk
file from both benign and malware categories consisted of
a fixed number of 10000 N-Grams. If three benign chunk
files and three malware chunk files were considered, then

the number of N-Grams in the benign category was 30000,
and similarly, the N-Grams size of the malware category was
also 30000. The time taken to compute the IG score of all
60000 N-Grams was 5244.857 seconds in the sequential model
and 1065.764 seconds in the multiprocessing model. In the
same way, when the threshold value was set to 15000, each
chunk file from both benign and malware categories consisted
of a fixed number of 15000 N-Grams. For the first three
chunk files, the N-Gram size of both benign and malware
was 45000 and the computational time observed to compute
the IG score for all 90000 N-Grams by the sequential model
was 7989.225 seconds and for the multiprocessing model was
1513.592 seconds. Similarly, on increasing the threshold value
to 20000, each benign chunk file and malware chunk file now
consisted of a fixed number of 20000 N-Grams. For three
benign chunk files and three malware chunk files, the N-Gram
size increased to 120000 and the time taken to compute the IG
score for all 120000 N-Grams was 11006.653 seconds by the
sequential model and 2081.264 seconds by the multiprocessing
model. Correspondingly, the computational time taken by the
sequential model and the multiprocessing model to compute
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(a) Computation Time(sec) - Chunk of 60000 N-Grams. (b) Computation Time(sec) - Chunk of 90000 N-Grams.

Fig. 4: Information Gain score computation time - Multiprocessing model.

(a) Computation Time(sec) - Chunk of 60000 N-Grams. (b) Computation Time(sec) - Chunk of 90000 N-Grams.

Fig. 5: Information Gain score computation time - Sequential model.

the IG score for 150000 N-Grams and 180000 N-Grams is
tabulated in Table I.

The computation time taken to compute the IG score by
the multiprocessing model for chunks of 60000 N-Grams
and 90000 N-Grams is shown in Fig. 4a and 4b, where the
highlighted part in Fig. 4a and 4b denotes the computation
time taken by the process (FUNC1, FUNC2, and FUNC3
denotes Process1, Process2, and Process3, respectively) to
compute the IG score. Similarly, experiments were carried
out for other chunks such as 120000 N-Grams, 150000 N-

Grams, and 180000 N-Grams. Fig. 5a and Fig. 5b represent
the computational time taken to compute the IG score by the
sequential model for chunks of 60000 N-Grams and 90000 N-
Grams. The highlighted part signifies the overall computation
time required by the sequential model to generate the IG
score. Similar demonstrations were performed for chunks of
120000 N-Grams, 150000 N-Grams, and 180000 N-Grams in
the sequential model. For each N-Gram, the computation time
needed to generate the IG score by the sequential model as
well as by the multiprocessing model was observed and is
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depicted in Table I.
Looking at Table I, we can notice that there is a drastic

improvement in the computation time of the IG score by
the proposed multiprocessing model. For the chunk of 60000
N-Grams, the computation time of the IG score reduced by
79.68%, and chunks of 90000, 120000, 150000, and 180000
N-Grams, the computational time was reduced by 81.05%,
81.09%, 80.44%, and 79.84%, respectively, against the se-
quential model. On average, the proposed approach was 80%
faster than the sequential model for the computation of the IG
score. As observed in Fig. 3, analogizing the two parameters
manifests that our multiprocessing model is faster than the
sequential model.

V. CONCLUSION

Many researchers incorporated N-Grams with the machine
learning technique to classify whether the given instance (input
file) belongs to the benign or malware class. FST is an im-
portant step that determines which features are best and which
features are noisy. The IG- FST technique consumes more time
in producing the IG score for each N-Gram, when the N-Gram
dataset size is large. To tackle this issue, in this work, we
have proposed, implemented, and validated a multiprocessing
model that generates IG score rapidly for larger N-Gram
datasets. Experiments were conducted with different sizes of
N-Grams datasets such as 60000, 90000, 120000, 150000, and
180000. In each experiment, the performance of the proposed
multiprocessing model in computing the IG score is high as
compared to the sequential model. On average, the proposed
approach is 80% faster than the sequential model of IG score
computation.
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