
VMI Based Automated Real-Time Malware
Detector for Virtualized Cloud Environment

M.A. Ajay Kumara(B) and C.D. Jaidhar

Department of Information Technology,
National Institute of Technology Karnataka, Surathkal, India

{ajayit13f01,jaidharcd}@nitk.edu.in

Abstract. The Virtual Machine Introspection (VMI) has evolved as a
promising future security solution to performs an indirect investigation of
the untrustworthy Guest Virtual Machine (GVM) in real-time by oper-
ating at the hypervisor in a virtualized cloud environment. The existing
VMI techniques are not intelligent enough to read precisely the manip-
ulated semantic information on their reconstructed high-level semantic
view of the live GVM. In this paper, a VMI-based Automated-Internal-
External (A-IntExt) system is presented that seamlessly introspects the
untrustworthy Windows GVM internal semantic view (i.e. Processes) to
detect the hidden, dead, and malicious processes. Further, it checks the
detected, hidden as well as running processes (not hidden) as benign or
malicious. The prime component of the A-IntExt is the Intelligent Cross-
View Analyzer (ICV A), which is responsible for detecting hidden-state
information from internally and externally gathered state information of
the Monitored Virtual Machine (Med−V M). The A-IntExt is designed,
implemented, and evaluated by using publicly available malware and
Windows real-world rootkits to measure detection proficiency as well as
execution speed. The experimental results demonstrate that A-IntExt
is effective in detecting malicious and hidden-state information rapidly
with maximum performance overhead of 7.2 %.

Keywords: Virtual Machine Introspection · Hypervisor · Malware ·
Semantic gap · Cross-view analysis · Rootkits

1 Introduction

The virtualization platform is becoming an attractive target for an adversary due
to easy access of Virtual Machines (VMs) through the cloud service provider [1].
The proliferation of sophisticated rootkit or malware could alter the normal
behavior of the legitimate GOS by altering the critical kernel data structures [2–
4]. The traditional in-host antimalware defense solution is not only inadequate
to thwart advanced malware, but it can also be easily removed by sophisticated
rootkits or malware. For example, the malicious logic employed by the Agobot
variant rootkit is powerful enough to bypass 105 antimalware defensive processes
on the victims machine [5]. To detect the stealthy and elusive malware, the VMI
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 281–300, 2016.
DOI: 10.1007/978-3-319-49445-6 16

282 M.A. Ajay Kumara and C.D. Jaidhar

[6] has emerged as a tamper-resistant and Out-of-the-Box practical solution to
enforce transparently the security assurance on the run state of the GVM [5,7,8].

The VMI is able to gather the run-state information of the Med−VM with-
out the consent or knowledge of the one being monitored, while functioning
at the hypervisor or the Virtual Machine Monitor (VMM). However, obtain-
ing meaningful GVM state information such as process list, module list, system
calls details, network connections, etc., from the viewable raw bytes of the GVM
memory is a challenging task for the VMI and referred to as the semantic gap
[9,10]. To tackle this problem, several approaches have evolved over the last
few years by considering different constraints of the GOS [11,12]. However, the
current challenges of VMI are: (1) It must have higher scalability features to
introspect the rich semantic view of the live state of the GVM. To achieve this,
it requires tremendous manual effort to build kernel data structure knowledge
of large volumes of GOS [13], (2) The VMI solution requires frequent rewriting
of the introspection program due to the dynamic and frequent upgrading of the
kernel version, and (3) The VMI must be built with a robust introspection tech-
nique that would help to reduce the performance overhead and make the VMI
automated with little human effort.

On the other hand, many modern families of malware leverages stealth rootk-
its functionality to conceals itself, and to evade detection system to tamper
other critical kernel data structure such as files, directories, sockets, etc. of the
GOS [14,15]. The best way of detecting it is by identifying the hidden running
processes. This process is the key source of information for any introspection
program to spot the existence of the malware. A prior attempt, the VMM-based
Lycosid [16] is aimed at detecting and identifying only the hidden processes (HP)
of the Med−VM at the VMM level. However, the current generation of evasive
malware may create new malicious processes (not hidden) or attach itself to the
existing legitimate running processes. In such cases, Lycosid is inadequate to
detect such a malicious malware process. It does not identify the name or binary
of the process and it is also inefficient in checking the detected hidden details are
malicious or benign. Moreover, the process visible from the hypervisor may be
noisy, most likely incorrect, and may lead to a false positive. Another approach,
named the Linebacker [17], also uses the cross view analysis to investigate the
rootkit running on the GVM. The efficiency of the Linebacker has been demon-
strated on the VMware vSphere-based GVM. However, only the Windows GVMs
were considered for evaluation.

The significant challenges in detecting the malicious and dead processes,
particularly in a virtualized environment are:

– The number of running processes may significantly differ from time-to-time,
even if there are no hidden processes at the moment of introspection (while
checking inside the VM and viewed from the VMM). This is due to the fact
that the number of processes available in the system is not constant and
changes too frequently. This is due to the dynamic nature of the process cre-
ation. In such cases, it is highly dubious to rely on the introspected data.

VMI Based Real-Time Malware Detector 283

– Estimating accurately the number of dead processes and precisely identifying
the malicious processes (not hidden) in a timely manner on the run state of
Med−VM is a challenging task.

In this work, the VMI-based A-IntExt system for a virtualized environment
is presented. It mainly detects the hidden, dead and malicious processes that are
invoked by rootkits or malware by leveraging Intelligent Cross-View Analysis
for Process (ICV Ap) algorithm between the externally (VMM-level) captured
run-state information and the internally (In-VM level) acquired execution-state
information of the Med−VM . Further, it checks detected, hidden as well as run-
ning processes (not hidden) as benign or malicious.

The pertinent contributions of the present work are as follows:

1. We have designed, implemented, and evaluated a consistent and real-time
A-IntExt system that periodically scrutinizes the state of the Med−VM to
detect hidden, dead, and malicious processes by leveraging an open-source
VMI1 tool, while functioning at the hypervisor.

2. Our novel A-IntExt accurately detects malicious and hidden-state information
on the externally reconstructed high-level semantic view of the Med−VM ,
and internally gathers state information of the same Med−VM by adopting
its prime ICV Ap algorithm. Further, it checks detected hidden as well as
running processes (not-hidden) as benign or malicious by cross-checking with
both local malware database and public malware scanner.

3. A mathematical model of the ICV Ap algorithm has been designed, practically
implemented, and implanted into the A-IntExt that detects and classifies
suspicious activities of the Med−VM .

4. The other focus of the A-IntExt is to address the time synchronization prob-
lem associated with the internally and externally captured GV Ms′ state infor-
mation, which impacts on the hidden-state information detection. This issue
is tackled by using the Time Interval Threshold (TIT).

5. The robustness of the A-IntExt was evaluated using publicly available Win-
dows rootkits. In addition, malware was also employed in the experimental
work to make the evaluation comprehensive. The A-IntExt correctly detected
all of the hidden and malicious state information.

The rest of the paper is organized as fallows: Sect. 2 provides background and
related work. Section 3 provides detailed overview of proposed A-IntExt system.
Section 4 discusses memory state reconstruction. Section 5 presents experiment
and results analysis. The performance overhead of A-IntExt described in Sect. 6.
Finally discussion and conclusion addressed in Sects. 7 and 8 respectively.

2 Background and Related Work

To address the semantic gap impediment of the VMI, an attempt was made
by Virtuno [9] that creates an introspection program automatically to extract
1 http://libvmi.com/.

http://libvmi.com/

284 M.A. Ajay Kumara and C.D. Jaidhar

meaningful semantic information using the dynamic slicing algorithm based on
the low-level data source of the Med−VM . The main limitation of this tech-
nique is not being fully automated and requires minimal human effort. VMST
[11] significantly eliminated the limitation of Virtuoso, by enabling an auto-
matic generation of a secure introspection tool with a number of new features
and capabilities. The Virtuoso and VMST paid more attention to bridging the
semantic gap, but were unable to satisfy the usefulness and practicality of the
VMI. Moreover, these techniques have a high overhead. The system call redi-
rection approach [18] proposed to meet the real-world needs of the VMI by
significantly improving the practical usefulness of the VMI, and encouraged one
inspection program to inspect the different versions of the GVM. The VMI-
based open source tools called Xen Access [7] or LibVMI, VMI-PL [19], Vprobe
[25], and HYPERSHELL [20] seamlessly address the semantic gap problem by
extracting semantic low-level artifacts of the GVM from the hypervisor specific
to the memory state introspection.

Hidden process detection: Antfarm [21] is a VMM based approach incorpo-
rated at the VMM to track implicitly and exploit the GOS activities. However,
it is insufficient in detecting malicious processes, which are invoked for ker-
nel code alteration. Lycosid [16] extends Antfarm as a VMM-based approach
for hidden processes detection and identification, based on implicitly obtained
process information from the GOS. Moreover, implicitly obtained information
within the hypervisor can be noisy. The authors employed a statistical infer-
ence and hypothesis technique to address this challenge. Another out-of-VM
hypervisor-based approach, namely, process out-grafting [8] focuses on analyz-
ing the individual process of running all of the VMs processes to identify and
detect the suspected process in an on-demand way. Patagonix [22] a hypervisor-
based system that detects and identifies stealthily executing binaries regardless
of the state of the OS kernel. To achieve this it uses knowledge of the hardware
architecture.

The Ghostbuster [23], VM watcher [11] and Lycoside [16] commonly uses
cross-view analysis technique to detect and identify of any discrepancy between
the trusted view and the untrusted view of the Med−VM . However, comparison
of the semantic data is manually achieved in most of these prior work. The
main limitation of the VMI-based cross-view comparison is related to the time
synchronization problem associated with the internal and external view acquired.
In our work, this issue is addressed using TIT. The ICV Ap is intelligent enough
to distinguish between hidden, genuine, and dead processes.

3 Overview of the VMI Based Automated
Internal-External System

The goal of the VMI-based A-IntExt system is to enable the inspection tool in a
trusted Monitoring Virtual Machine (Ming−VM) to investigate the hidden and
malicious run state of the untrusted Med−VM . The overall architectural design

VMI Based Real-Time Malware Detector 285

Fig. 1. The proposed VMI based A-IntExt system

of the A-IntExt is shown in Fig. 1. The prime idea is to introduce a hyper-
visor protected, automated, and independent system to introspect the volatile
RAM pages of the Med−VM from the Ming−VM , and then to identify the hidden
execution state by performing an intelligent cross-comparison operation on the
internally and externally captured state information. The A-IntExt achieves this
goal by using the ICV A, which is an integral component. The major compo-
nents of the A-IntExt are the Guest Virtual Machine State Information Extractor
(GV MSIE), ICVA, Online Malware Scanner(OMS) and Alert Generator(AG).

3.1 Guest Virtual Machine State Information Extractor

The prime function of the GV MSIE is to extricate the run-state information
of the Med−VM . Its components are: (1) State Information Requester (SIR),
and (2) VMI-based State Information Extractor (V MISIE). The GV MSIE

initiates the process of investigation by signaling the SIR to send a state-
information request to the Med−VM for currently running processes details. The
SIR makes use of the communication channel established between the Ming−VM

and Med−VM to send a request and to receive a reply. Upon receiving the state-
information request (step 1), the Med−VM acquires the requested data locally,
and then sends the results to SIR after completion of the extraction operation.
After receiving the internally gathered state information as a reply from Med−VM

(step 2), the next task of the SIR is to verify whether a reply arrived within
TIT. If the time gap between the state-information request to state-information
reply lies within TIT, then GV MSIE immediately acquires the currently run-
ning processes of the Med−VM from the hypervisor to capture the current

286 M.A. Ajay Kumara and C.D. Jaidhar

Fig. 2. Hidden processes (a) dubious processes (b) details of Med−V M externally intro-
spected (left side) and internally acquired (right side) by the A-IntExt after rootkit
injection on Windows GVM

execution state by directly introspecting the RAM pages of the one being mon-
itored (steps 3 and 4). The SIR rejects the state-information reply and sends a
fresh request whenever the time interval between the state-information request
and state-information reply falls outside the TIT.

Figure 2 shows the processes of the Med−VM captured internally and exter-
nally after malware and the rootkit injection, it includes hidden, Dubious
processes (DPs2) information. This is achieved by the well-built isolation prop-
erty of the hypervisor guarantees that the state information captured from the
Ming−VM is accurate. The procedure followed by the V MISIE to reconstruct
the Med−VM memory is described in Sect. 4. The GV MSIE sends the gathered
state information to the ICV Ap for further analysis.

3.2 Time Interval Threshold

TIT is utilized in the GV MSIE to address the time synchronization prob-
lem between the internal and external state-information captures. TIT is the
time interval between the state-information request sent to Med−VM and state-
information reply received by the SIR. Figure 3 demonstrates the TIT used by
the GV MSIE . Let T1 be the date and time at which the state-information request
is sent to the Med−VM , and T2 be the date and time at which the reply is received
by the SIR from the Med−VM . Upon receiving the state information, the SIR

2 Dubious Processes (DPs) are current state of executable processes it includes both
benign and malicious processes (not hidden) on the Ming−V M . Existing hypervisor-
based VMI systems are not intelligent enough to detect and identify actual malicious
processes that are running or attached to a benign one.

VMI Based Real-Time Malware Detector 287

checks the time interval between T2 and T1; T2 − T1 > ΔT, then the GV MSIE

rejects the received state information and resends the state information request,
where, ΔT denotes the predefined threshold time. If, T2 − T1 ≤ ΔT, then, the
GV MSIE immediately acquires the execution state of the Med−VM from the
hypervisor.

Assume that the processes P1, P2, P3...., PN are currently being run at
Med−VM and their details are extracted internally during the time interval
between T1 and T ′′

1 . If any process expires or dies after T ′′
1 and before T2, such

process details do not show up in the state information caught externally by the
Ming−VM . As a result, a disparity emerges between the internally and externally
captured state information of the Med−VM .

Fig. 3. Time interval threshold used by A-IntExt

The process details appear in the internally captured state information and
are absent in the externally captured state information treated as dead processes.
In contrast, if a new process PN+1 is created between T ′′

1 and T3, such process
details appear only in the externally captured state information and not in the
internally captured state information. As a result, process PN+1 is recognized as
a hidden process, even though process PN+1 is unconcealed. To tackle this issue,
first, A-IntExt extracts the entire executable file of the corresponding process,
and then, investigates to detect whether any malignant substance is present or
not.

3.3 Intelligent Cross-View Analyser

The ICV A is an integral component of the A-IntExt and its prime func-
tion is to recognize hidden and dead processes of the untrusted Med−VM ,

288 M.A. Ajay Kumara and C.D. Jaidhar

by performing an intelligent cross-examination between the internally and exter-
nally acquired execution-state information using ICV AP algorithm. A-IntExt
ascertains the existence of hidden processes by examining Eq. (4); similarly, dead
process presence is identified by checking Eq. (6). Further, A-IntExt classifies
the introspected processes as hidden and DPs to ascertain whether the detected
hidden process and DPs of Med−VM are benign or malicious by performing a
cross-examination with the public OMS, as discussed in Sect. 3.4.

Model for Intelligent Cross-View Analyzer for Processes. The notations
used in this section and in Algorithm 1 are depicted in Table 1. The process
details captured from the hypervisor (externally) undergo the preprocessing
operation, and then stored as EXTps = {PID ‖ PN1, P ID ‖ PN2, P ID ‖
PN3....., P ID ‖ PNm} where m = 1, 2, 3,..., and

Table 1. Notations used in the algorithms and their meaning

Symbol Meaning of the Symbol Used in

HPC Hidden Process Count Algorithms1

DPC Dead Process Count

PID Process Identifier

PS Process

PN Process Name

‖ Concatenation

PID‖PN PID concatenated with PN

INTps Internally Captured Processes

INTpsc Internally Captured Processes Count

EXTps Externally Captured Processes

EXTpsc Externally Captured Processes Count

EXTps(PID ‖ PNm) mth PID‖PN of EXTps

INTps(PID ‖ PNn) nth PID‖PN of INTps

PID ‖ PNm represent the mth process. The internally captured process
details after the preprocess operation are represented as INTps = {PID ‖
PN1, P ID ‖ PN2, P ID ‖ PN3....., P ID ‖ PNn} where n = 1, 2, 3,..., and
PID ‖ PNn represent the nth process. The ICV Ap performs the preprocess-
ing operation to remove unimportant state information and sort the elements of
both the EXTps and INTps in ascending order, based on the PID.

The total number of EXTps processes is symbolized as EXTpsc

EXTpsc =
m∑

j=1

PID ‖ PNj (1)

VMI Based Real-Time Malware Detector 289

Algorithm 1. Intelligent Cross View Analyzer for Process (ICV AP)
Input

1: Processes details captured externally from hypervisor stored as EXTps.
2: Process details captured and sent by the monitored virtual machine (Internally)

stored as INTps.

Output

1: Hidden and dead processes details
2: Hidden Process Count (HPC) and Dead Processes Count (DPC)

1: Pre-process the EXTps and INTps such that their elements are in sorted order
based on PID

2: Assign HPC=0, DPC=0, p=EXTpsc, q=INTpsc, n=1, m=1
3: for all m such that 1 ≤ m ≤ p do
4: if n > q then
5: Break
6: else
7: compare EXTps(PID ‖ PNm) with INTps(PID ‖ PNn)
8: if EXTps(PID ‖ PNm) = = INTps(PID ‖ PNn) then
9: m=m+1; n=n+1; goto step 4;

10: else
11: if EXTps(PID ‖ PNm) < INTps(PID ‖ PNn) then
12: store EXTps(PID ‖ PNm) as hidden process into HP.txt
13: m=m+1; HPC = HPC + 1; goto step 4
14: else
15: if EXTps(PID ‖ PNm) > INTps(PID ‖ PNn) then
16: store INTps(PID ‖ PNn) as dead process into DP.txt
17: DPC = DPC +1; n=n+1; goto step 4
18: end if
19: end if
20: end if
21: end if
22: end for
23: if m < p &&n > q then
24: Store EXTps(PID ‖ PNm),...,EXTps(PID ‖ PNp) as hidden processes into

HP.txt
25: HPC = HPC + (p-m).
26: end if
27: if m > p &&n < q then
28: Store INTps(PID ‖ PNn),..., INTps(PID ‖ PNq) as dead processes into DP.txt.
29: DPC=DPC + (q-n)
30: end if

The total number of INTps processes is represented as INTpsc

INTpsc =
n∑

j=1

PID ‖ PNj (2)

290 M.A. Ajay Kumara and C.D. Jaidhar

Any inconsistency between EXTpsc and INTpsc i.e. EXTpsc �= INTpsc indi-
cates an abnormal state of the Med−VM . Algorithm 1 depicts the procedure
followed by the ICV AP to perform the cross-examination between the EXTps

and INTps. At the end of the scrutiny, ICV AP provides Hidden Process Count
(HPC) and Dead Process Count (DPC), hidden and dead processes.

ICV AP (EXTps, INTps) → HPC,DPC, hidden, deadprocess (3)

To ascertain the hidden and dead processes, the ICV AP compares the
EXTps(PID ‖ PNm) with INTps(PID ‖ PNm), where (PID ‖ PNm)
is the mth PID and PN. It treats the examined processes as dubious when
they are equal. If they are unequal, it checks further to determine whether
EXTps(PID ‖ PNm) is greater than INTps(PID ‖ PNm); if the condi-
tion is satisfied, then the ICV AP declares the INTps(PID ‖ PNm) as a
dead process. It continues the comparison operation EXTps(PID ‖ PNm)
with INTps(PID ‖ PNj), where j = m + 1, m + 2,..., until it finds that
EXTps(PID ‖ PNm) is equal to INTps(PID ‖ PNj), and then declares the
processes from INTps = {PID ‖ PNm,, P ID ‖ PNj−1} as dead processes
when the condition EXTps(PID ‖ PNm) = = INTps(PID ‖ PNj) is sat-
isfied. If EXTps(PID ‖ PNm) is less than INTps(PID ‖ PNm), then the
ICV Ap declares the EXTps(PID ‖ PNm) as a hidden process. The comparison
operation between the externally and internally captured state information is
continued until all of the elements are examined.

Case 1: HPC > 0 indicates that some processes are hidden at the Med−VM .
Equation (4) is an indication of malware infection.

((EXTpsc �= INTpsc)&&(HPC > 0)) (4)

Case 2: HPC = 0 denotes that the processes viewed externally are the same
as the processes viewed internally. The state of the Med−VM is dubious state
when Eq. 5 is satisfied.

((EXTpsc == Intpsc)&&(HPC == 0)) (5)

Case 3: The dead process count indicates that the number of processes cap-
tured externally is smaller than the number of processes captured internally.
This is due to the dynamic nature of the create and destroy of processes. To
overcome this situation, A-IntExt first captures the state information of the
Med−VM internally, followed by externally within the TIT.

(EXTpsc < INTpsc) (6)

3.4 Online Malware Scanner

The OMS is another key component of the A-IntExt and it performs two key
functions. First, from the hypervisor it extracts the complete binary of the hidden
process (executable file) that is reported by the ICV AP . The OMS accomplishes

VMI Based Real-Time Malware Detector 291

this by utilizing procdump plugin of an open source tool3 on the acquired memory
dump of Med−VMs. For each executable file, it computes three distinct hash
digests, such as Message Digest (MD5), Secure Hash Algorithm-1 (SHA-1), and
Secure Hash Algorithm-256 (SHA-256). Further, these computed hash digests
were checked with Local Malware Database (LMD4) to identify any types of
hash digests were matched with stored hash digests of known malware types, if
not it sends the computed hash digests to powerful public free OMSs and gets an
examination report to ascertain whether the extracted executable file is benign
or malignant. Similarly, OMS also extracts other processes executable files that
are not classified as hidden processes by the ICV AP that are currently being
running in the Med−VM . These processes are named as dubious processes. Like
shrouded processes, the OMS additionally registers hash digest for non-concealed
processes and sends them to OMS to identify whether the non-concealed process
executable file is malevolent or benign. The procedure involved in determining
whether the detected hidden and running dubious (not-hidden) processes are
benign or malicious is shown in Fig. 4. The accurate identification and detection
of hidden processes leads to A-IntExt generating an alert.

4 Windows VM Memory State Reconstruction

The Intel VT-X and AMD-V virtualization architectures provide hardware-
assisted Extended Page Table (EPT) and nested page table to facilitate the
address translation more efficiently by leveraging the EPT mechanism [26], the
A-IntExt is able to read the guest virtual address from the raw memory contents
of the GVM. However, due to the dynamic nature and consistent upgrading of
the kernel version, reconstructing the semantic view of the virtual machine is
a challenging task for the VMI technology. To reconstruct the memory state of
the Med−VM , the A-IntExt prototype leverages an open-source VMI tool that
uses the xc map foreign range() function provided in the Xen Control Library
(libxc) to understand and reconstruct volatile memory artifacts of the Med−VM

without the consent of the Med−VM . Later, the same function accesses the RAM
memory artifacts, and finally, converts the page frame number to the memory
frame number.

Translation of the virtual machine memory address into the corresponding
physical address in the host machine is needed to reconstruct the semantic view
of the Med−VM . To reconstruct the memory state information for a commod-
ity operating system (e.g., Windows), the VMI techniques require an in-depth
knowledge of the GVM kernel data structures. Static data entries of the kernel
symbol table are crucial for the kernel and boot-up procedures. Memory-state
reconstruction is the initial step in extracting meaningful high-level information
(ps, lsmod, etc.) from low-level artifacts of the live GVM. This is achieved in
3 http://www.volatilityfoundation.org/.
4 LMD consists of 107520 MD5,SHA-1, and SHA-256 hash digest for all previously

identified well-known families of malware which was obtained by using https://
virusshare.com/ malware repository.

http://www.volatilityfoundation.org/
https://virusshare.com/
https://virusshare.com/

292 M.A. Ajay Kumara and C.D. Jaidhar

Fig. 4. Online malware scanner

the A-IntExt system by leveraging the VMI technology, while functioning at
Ming−VM of the hypervisor with the kernel symbol table of the corresponding
GVM.

In the Windows system, each process associated with a data structure is
called an EPROCESS. Each EPROCESS has many data fields and one Forward
Link (FLINK) pointer and one Backward Link (BLINK) pointer. The FLINK
contains the address of the next EPROCESS and BLINK stores the address
of the previous EPROCESS. The first field of the EPROCESS is a process
control block, which is a structure of type Kernel Process (KPROCESS). The
KPROCESS is used to provide data related to scheduling and time accounting.
Other data fields of the EPROCESS are PID, Parent PID (PPID), exit status,
etc. [24]. The field position of the PID and the PPID in the EPROCESS structure
may differ from one operating system version to another version, and the series of
FLINK and BLINK systematizes the EPROCESS data structures in a circular
doubly linked list. A Windows symbol, such as the PsActiveProcessHead, points
to the doubly linked list. Traversing the EPROCESS doubly linked list from the
beginning to the end provides all of the running process details.

VMI Based Real-Time Malware Detector 293

5 Experimental Results and Evaluation

5.1 Experimental Setup

Experiments were conducted on the host system, which possessed the follow-
ing specifications: Intel(R) core(TM) i7-3770 CPU@3.40 GHz, 8 GB RAM, and
Ubuntu 14.04 (Trusty Tahr) 64-bit operating system. The popular open-source
Xen 4.4 bare metal hypervisor was utilized to establish a virtualized environ-
ment. To introspect the run state of the live Med−VM , Windows XP-SP3 32 bit
GVM created as DOMU-1 under the Xen hypervisor. The GVM was managed
by the trusted VM (DOM-0 i.e. management unit) of the Xen hypervisor. The
A-IntExt was installed on the DOM-0 VM, and it leveraged the popular VMI
tool, namely, the LibVMI version 0.10.1 to introspect low-level artifacts of the
GVMs. The LibVMI traps the hardware events and accesses the vCPU registers,
while functioning at the hypervisor.

5.2 Implementation

The implementation of A-IntExt is at three levels: (i) it acts as a VMI system
by leveraging a prominent VMI tool to introspect and acquire the GVM running
state information without human intervention, (ii) the ICV AP algorithm is
implemented as Proof of Concept (PoC) and induced into the A-IntExt, wherein
the ICV AP detects hidden, dead and dubious processes. In addition, a program
was developed that establishes a communication channel between the A-IntExt
and the Med−VM , which also facilitates the transfer of state information by the
Med−VM to the ISR. (iii) The A-IntExt comprises another major component
named OMS (see Sect. 3.4). It is used to identify whether the detected hidden
and classified DPs are benign or malicious by auxiliary verification with LMD
and large online free public malware scanners5 while addressing the malicious
processes (not hidden) detection challenges as discussed in Sect. 1.

5.3 Windows Malware and Windows Rootkits

To convert the benign Windows GVM into a malicious one and to perform
malicious activities on the GVM, two stages of experiments were performed using
a combination of both malware and publically available Windows rootkits. In
the first stage, the evasive malware variant called Kelihos was directly collected
from malware repository6 to generate bulk malicious processes. In the second
stage of the experiment, five publicly available real-world Windows rootkits that
have the ability to hide the processes were used.

Experiment 1: Kelihos is a Windows malware also known as Hlux. Once it
starts to execute, it generates a number of child processes, and then exits from
the main process to conceal its existence. It launches a set of processes in a span
5 https://www.virustotal.com/.
6 http://openmalware.org/.

https://www.virustotal.com/
http://openmalware.org/

294 M.A. Ajay Kumara and C.D. Jaidhar

of a short interval, which influences the process count. The main function of the
generated child process is to monitor user activities, and then report it to the
Command and Control Server (C&C) to be joined into a botnet. The Kelihos
malware was used to breed a number of processes, and at the same time, the
Hacker defender rootkit was used to hide the process. This test was done to
demonstrate the detection accuracy of the A-IntExt under a dynamic process
creation environment. The A-IntExt extracts the manipulated semantic kernel
data structure details related to the process by walking through the EPROCESS
data structure and its associated PsActiveProcessHead symbol (see Sect. 4).

Table 2. Detection and classification of hidden, dead and DPs by the A-IntExt for
windows GVM

Exp PS used PS visible

at GVM

PS Introspected

by A-IntExt

No. of PS classified by A-IntExt Time in

(Sec)

HPC DPC DPs

Test-1 25 20 25 5 0 20 0.22

Test-2 50 45 50 5 0 45 0.41

Test-3 75 70 74 5 1 69 0.63

Test-4 100 95 99 5 1 94 0.82

Test-5 125 120 123 5 2 118 1.03

The ICV Ap is a subcomponent of the A-IntExt and its task is to identify
hidden, dead and dubious processes by performing a comparison operation on
the internally and externally captured state information of the Med−VM . The
performance evaluation tests for both the ICV Ap and the A-IntExt were con-
ducted separately. To measure the execution speed of the ICV AP in detecting
the hidden and dead processes, experiments were performed with different num-
bers of processes, i.e., 25, 50, 75, 100, and 125. The execution speed denotes
the amount of time the ICV AP takes to derive a conclusion as to whether the
process is hidden, dead or dubious processes. The last columns of Table 2 depicts
the average detection time of the ICV AP for different numbers of processes on
the Windows GVM. One can observe that the detection time of the ICV AP for
125 processes is less than 1.03 s.

Table 3. Identifying an actual malicious process from detected hidden processes by
OMS of A-IntExt on Windows GVM.

Exp No. of HP Computed MD5 hash for classified HP Checked as PS name D R

1 5 55cc1769cef44910bd91b7b73dee1f6c Malicious hxdef073.exe 37/53

be046bab4a23f8db568535aaea565f87 NF procdump.exe 0/53

6cf0acd321c93eb978c4908deb79b7fb NF chrome.exe 0/53

bf4177e1ee0290c97dbc796e37d9dc75 NF iexplore.exe 0/53

d068da81e1ab27dc330af91bffd36e6b NF firefox.exe 0/53

VMI Based Real-Time Malware Detector 295

Table 4. Identifying an actual malicious processes from detected and classified DPs
by OMS of A-IntExt on Windows GVM.

Exp No.of DPs Scanned result Malicous PS reported with MD5 hash Name D R

Benign Malware

1 20 18 2 0bf067750c7406cf3373525dd09c293c EFMTnkT7m.exe –

5fcfe2ca8f6b8d93bda9b7933763002a kelihos dec.exe 37/55

Twenty-five processes were considered in the first test; each test was per-
formed five times to derive the average detection time. Prior to the evaluation,
five processes were hidden at the Med−VM and all of them were correctly detected
by the A-IntExt, including the hidden, dead, and DPs, as shown in Table 2. Fur-
ther, A-IntExt precisely address the malicious process detection challenges (see
Sect. 1) by leveraging its OMS component. As part of the experimental obser-
vations, Test-1 of Table 2 describes the 25 processes externally introspected by
A-IntExt, which includes five hidden processes and twenty DPs that are clas-
sified by the ICV AP ; these hidden and DPs are propagated by the malware.
In our experiment-1, we used kelihos malware to generate malicious processes
(not hidden) and perform spiteful activity on Med−VM . At the same time,
we used hacker defender rootkit to hide some processes. During introspection
of the untrustworthy Med−VM , A-IntExt precisely classified the infection activ-
ity of the malware processes as hidden and DPs. Table 3 describes that from
the five detected hidden processes, one process (hxdef073.exe) is correctly iden-
tified as malicious with Detection Rate(DR) of 37/53 based on the computed
hash, and the other four processes such as the procdump.exe, chrome.exe, iex-
plorer.exe, and firefox.exe, which were actually hidden by the hacker defender
rootkit, are reported as benign by the OMS. Similarly, Table 4 represents the 20
DPs that were classified by A-IntExt further, those processes were checked with
both LMD and OMS based on the computed hashes. The time taken to compute
MD5,SHA-1,SHA-256 hashes and cross-check with LMD are depicted in Fig. 5.
As a result, one process (EFMTnkT7m.exe) is identified as malicious by locally
checking with LMD (without forwarding to virustotal) and other advanced mal-
ware process (kelihos dec.exe) identified as malicous checking with OMS as
shown in Fig. 6, and the rest were recognized as benign or Nothing Found (NF).

Table 5. List and functionality of Windows rootkit

Rootkit name User mode/Kernel mode Target object Hide PS Detected by A-IntExt

Fu Rootkit Kernel mode EPPROCESS Yes Yes

HE4Hook Kernel Mode EPPROCESS Yes Yes

Vanquish(0.2.1) User mode IAT,DLL Yes Yes

Hacker Defender User mode IAT,DLL Yes Yes

AFX Rootkit User mode IAT,DLL Yes Yes

IAT: Interrupt Address Table, DLL: Dynamic Link Library

296 M.A. Ajay Kumara and C.D. Jaidhar

Fig. 5. The average time taken by OMS to compute MD5,SHA-1, and SHA-256 hashes
for different processes (5a). Time taken by OMS to detect malware by cross-checking
with LMD based on it’s computed hashes (5b).

Experiment 2: In the second stage of the experiment, five publicly available
Windows rootkits were used as shown in Table 5. The third and fourth columns of
Table 5 represent target object and complete functionality of the rootkit, respec-
tively. However, in this stage of the experiment, the detection capability of the
A-IntExt was limited to only the processes. For example, the FU rootkit lever-
ages the direct kernel object manipulation technique to hide a list of active
processes by directly unlinking the doubly linked list EPROCESS data struc-
ture. It contains the fu.exe executable file and the msdirectx.sys system file. The
function of hiding the kernel driver module files is achieved by the msdirectx.sys,
whereas the fu.exe file is used to configure and command the driver. The FU
rootkit is capable of achieving privilege escalation of the running processes and
can also alter the DLL semantic object of the kernel data structure by rewriting
the kernel memory. TheHE4Hook is a kernel-mode rootkit and the user-mode
rootkits areVanquish, Hacker defender, and AFX Rootkit. These rootkits have
the potential to hide the running processes on the Windows system. The fifth
column of Table 5 represents the detection of hidden processes performed by the
A-IntExt.

6 Performance Overhead

A series of tests were conducted using Windows system benchmark tools to
determine the performance impact of the A-IntExt. The benchmark tests were
executed on the Windows GVM in two different scenarios to evaluate the per-
formance impact of the A-IntExt. In the first scenario, the A-IntExt was dis-
abled (not functioning), and in the second scenario the A-IntExt was enabled
(running). PCMark05, an industry standard benchmark, was executed on the
Windows GVM to quantify the performance impact of the A-IntExt. Tests such
as the CPU, Memory, and HDD of the PCMark05 suite were considered. These

VMI Based Real-Time Malware Detector 297

Fig. 6. OMS results for kelihos dec.exe malware

Fig. 7. Performance impact of A-IntExt on PCMark05 in detecting hidden and mali-
cious state information of Med−V M for Windows GVM

tests were executed separately five time on the GVM. Finally, the results were
considered on an average five-time execution of each test.

298 M.A. Ajay Kumara and C.D. Jaidhar

During hidden, dead and DPs process detection, tests such as File Decryp-
tion, HDD-Text Startup, and HDD-File-Write induced maximum performance
overheads of 6.8 %, 7.2 %, and 5.6 %, respectively, other tests performance over-
heads observed is less than 5.5 %. These were noticed while the A-IntExt per-
formed process introspection traces on the executed malware and rootkits.
Figure 7 represents the overall performance of the A-IntExt in detecting hid-
den, dead and dubious processes detection.

The main reason for the performance loss is due to direct introspection and
the semantic view reconstruction operation performed by the A-IntExt. As the
ICV AP achieve the job offline, there is no performance overhead.

7 Discussion

The existing VMI techniques facilitate reconstructing a few semantic views of
the Med−VM by directly intercepting the RAM contents of the live Med−VM by
overcoming the semantic gap problem. However, these techniques are yet to be
intelligent and automated to introspect and accurately detect hidden or mali-
cious semantic state information on their reconstructed high-level semantic view.
The design, implementation, and evolution of the proposed A-IntExt are signi-
fied as an intelligent solution to precisely detect the malignant processes running
on the Med−VM . It acts as a perfect VMI-based malware symptoms detector by
logically analyzing the malicious infection of the operating systems key source
information (processes). The ICV Ap of the A-IntExt judiciously performs a
cross-examination to detect the hidden-state information of the GOS that is
manipulated by different types of evasive malware or stealthy rootkits. Malicious
processes (not-hidden) are identified by the OMS. We believe that the current
development of A-IntExt is proficient in detecting hidden, dead, and malicious
processes of any kind of malware or rootkit. However, detecting and identifying
both known and unknown malware processes by performing cross-examination
with both LMD and powerful online malicious content scanners (Viroustotal)
using it’s computed hashes (MD5, SHA-1, and SHA-256). The major limitation
in identifying malicious processes by the Viroustotal is that it accepts only four
requests per minute.

8 Conclusion and Future Work

In this work, we designed, implemented, and evaluated the A-IntExt system,
which detects hidden, dead and malicious processes by performing an intelligent
cross-view analysis on the internally and externally captured run-state informa-
tion of the Med−VM . The A-IntExt abstracts the semantic view (processes) of
the live Windows GVM externally (VMM-level). It uses an established commu-
nication channel between the Ming−VM and Med−VM to receive internally cap-
tured run-state information (at-VM-level), further proficiently detecting hidden
and malignant state information of the Med−VM that could be manipulated by
sophisticated malware or real-world rootkits. The A-IntExt is intelligent enough

VMI Based Real-Time Malware Detector 299

to address the challenges that lie in detecting malicious (not-hidden) processes
of the run state of the Med−VM using its OMS component. Publicly available
evasive malware, real-world Windows rootkits were used to perform a series
of experiments to accurately measure the hidden-state and malicious detection
capability of the A-IntExt. The experimental results showed the accuracy of A-
IntExt in detecting stealthy processes with a maximum performance overhead
of 7.2 %.

As future work, we plan to enhance the detection capability of the A-IntExt
to detect unknown malware which are not recognized by OMS of A-IntExt, by
incorporating machine learning algorithms so that detection capability A-IntExt
can be evaluated against most commonly emerging advanced persistent threats,
elusive malware and rootkit.

References

1. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: Issues, security threats, and
solutions. ACM Comput. Surv. (CSUR) 45(2), 17 (2013)

2. Barford, P., Yegneswaran, V.: An inside look at botnets. Malware Detection.
Springer, New York (2007)

3. Lanzi, A., Sharif, M.I., Lee, W.: K-Tracer: a system for extracting kernel malware
behavior. In: NDSS (2009)

4. Prakash, A., et al.: Manipulating semantic values in kernel data structures: attack
assessments and implications. In: 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE (2013)

5. Jiang, X., Wang, X., Dongyan, X.: Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security. ACM (2007)

6. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: NDSS. vol. 3 (2003)

7. Payne, B.D., Martim, D.D.A., Lee, W.: Secure and flexible monitoring of virtual
machines. In: Twenty-Third Annual Computer Security Applications Conference,
ACSAC 2007. IEEE (2007)

8. Srinivasan, D., et al.: Process out-grafting: an efficient out-of-VM approach for fine-
grained process execution monitoring. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security. ACM (2011)

9. Dolan-Gavitt, B., et al.: Virtuoso: narrowing the semantic gap in virtual machine
introspection. In: 2011 IEEE Symposium on Security and Privacy. IEEE (2011)

10. Jain, B., et al.: SoK: introspections on trust and the semantic gap. In: 2014 IEEE
Symposium on Security and Privacy. IEEE (2014)

11. Fu, Y., Lin, Z.: Bridging the semantic gap in virtual machine introspection via
online kernel data redirection. ACM Trans. Inf. Syst. Secur. (TISSEC) 16(2), 7
(2013)

12. Saberi, A., Yangchun, F., Lin, Z.: HYBRID-BRIDGE: Efficiently bridging the
semantic gap in virtual machine introspection via decoupled execution and training
memoization. In: Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS-2014) (2014)

13. Bauman, E., Ayoade, G., Lin, Z.: A Survey on Hypervisor-Based Monitoring:
approaches, applications, and evolutions. ACM Comput. Surv. (CSUR) 48(1), 10
(2015)

300 M.A. Ajay Kumara and C.D. Jaidhar

14. Goudey, H.: Threat Report: Rootkits. https://www.microsoft.com/en-in/
download/details.aspx?id=34797

15. Xuan, C., Copeland, J., Beyah, R.: Toward revealing kernel malware behavior in
virtual execution environments. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 304–325. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04342-0 16

16. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden
process detection and identification using Lycosid. In: Proceedings of the fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments. ACM (2008)

17. Richer, T.J., Neale, G., Osborne, G.: On the effectiveness of virtualisation assisted
view comparison for rootkit detection. In: Proceedings of the 13th Australasian
Information Security Conference (AISC 2015), vol. 27, p. 30 (2015)

18. Wu, R., et al.: System call redirection: A practical approach to meeting real-world
virtual machine introspection needs. In: 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE (2014)

19. Westphal, F., et al.: VMI-PL: a monitoring language for virtual platforms using
virtual machine introspection. Digital Invest. 11, S85–S94 (2014)

20. Fu, Y., Zeng, J., Lin, Z.: HYPERSHELL: a practical hypervisor layer guest OS shell
for automated in-VM management. In: 2014 USENIX Annual Technical Conference
(USENIX ATC 2014) (2014)

21. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking
processes in a virtual machine environment. In: USENIX Annual Technical Con-
ference, General Track (2006)

22. Litty, L., Andres Lagar-Cavilla, H., Lie, D.: Hypervisor support for identifying
covertly executing binaries. In: USENIX Security Symposium (2008)

23. Wang, Y.-M., et al.: Detecting stealth software with strider ghostbuster. 2005 Inter-
national Conference on Dependable Systems and Networks (DSN 2005). IEEE
(2005)

24. Lamps, J., Palmer, I., Sprabery, R.: WinWizard: expanding Xen with a LibVMI
intrusion detection tool. In: 2014 IEEE 7th International Conference on Cloud
Computing. IEEE (2014)

25. Vmware, 2011. Vmware, inc. vprobes programming reference. http://www.
vmware.com/pdf/ws8 f4 vprobes reference.pdf

26. Aneja, A.: Xen hypervisor case study-designing embedded virtualized Intel archi-
tecture platforms. Intel, March 2011. https://www.intel.in/content/dam/www/
public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-
paper.pdf

https://www.microsoft.com/en-in/download/details.aspx?id=34797
https://www.microsoft.com/en-in/download/details.aspx?id=34797
http://dx.doi.org/10.1007/978-3-642-04342-0_16
http://dx.doi.org/10.1007/978-3-642-04342-0_16
http://www.vmware.com/pdf/ws8_f4_vprobes_reference.pdf
http://www.vmware.com/pdf/ws8_f4_vprobes_reference.pdf
https://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf

	VMI Based Automated Real-Time Malware Detector for Virtualized Cloud Environment
	1 Introduction
	2 Background and Related Work
	3 Overview of the VMI Based Automated Internal-External System
	3.1 Guest Virtual Machine State Information Extractor
	3.2 Time Interval Threshold
	3.3 Intelligent Cross-View Analyser
	3.4 Online Malware Scanner

	4 Windows VM Memory State Reconstruction
	5 Experimental Results and Evaluation
	5.1 Experimental Setup
	5.2 Implementation
	5.3 Windows Malware and Windows Rootkits

	6 Performance Overhead
	7 Discussion
	8 Conclusion and Future Work
	References

