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Abstract—Malicious software or malware has grown rapidly
and many anti-malware defensive solutions have failed to detect
the unknown malware since most of them rely on signature-
based technique. This technique can detect a malware based
on a pre-defined signature, which achieves poor performance
when attempting to classify unseen malware with the capability
to evade detection using various code obfuscation techniques.
This growing evasion capability of new and unknown malwares
needs to be countered by analyzing the malware dynamically in
a sandbox environment, since the sandbox provides an isolated
environment for analyzing the behavior of the malware. In this
paper, the malware is executed on to the cuckoo sandbox to
obtain its run-time behavior. At the end of the execution, the
cuckoo sandbox reports the system calls invoked by the malware
during execution. However, this report is in JSON format and
has to be converted to MIST format to extract the system calls.
The collected system calls are structured in the form of N-
Grams, which help to build the classifier by using the Information
Gain (IG) as a feature selection technique. A comprehensive
experiment was conducted to perceive the best fit classifier among
the chosen classifiers, including the Bayesian-Logistic-Regression,
SPegasos, IB1, Bagging, Part, and J48 defined within the WEKA
tool. From the experimental results, the overall best performance
for all the selected top N-Grams such as 200, 400, and 600 goes
to SPegasos with the highest accuracy, highest True Positive Rate
(TPR), and lowest False Positive Rate (FPR).

Keywords—Sandbox, Malware Detection, Machine Learning,
Hypervisor, Virtual machine, N-Gram Feature Extraction.

I. INTRODUCTION

Malware is also known as malicious software. It is a

malicious code developed with the intention of damaging the

function of a system. Malware has the capacity to disorder

the normal operation by infecting the system or network

[1]. It enters a system either through multiple media or gets

downloaded into the system as a genuine application. Once it

gets into the system, it checks for vulnerabilities and infects

the system, if the system is highly vulnerable. Generally,

antimalware defensive solutions are signature dependent and

run inside the host machines. They are inadequate to thwart

the emerging advanced malware attacks.

Computerized malware examination frameworks (or sand-

boxes) [2] [3] are one of the most recent security innovation

used to detect malware based on behavior traits. Such frame-

works allow an unknown malware to execute in an isolated en-

vironment and screen its run-time behavior. Such frameworks

have been in use as a major aspect of the manual investigation

process for a while; they are progressively utilized as a primary

component of the automated malware detection approach. The

main upside of the automated malware detection technique is

that it is able to recognize the unseen malware on the basis

of the observed activities gathered during the execution of the

malware. Majority of the sandboxes observe at the system call

interface the behavior of a user mode process. System calls are

a routine that allow the operating system to interact with the

user-level process to perform their desired task. These tasks

include reading data from files, delivering packets across the

network, and recording of entry from the registry. Looking

deeper into the execution of a program, a lot more interesting

information can be gathered.

This paper presents a classic approach to the detection of

malware by extracting only the system calls (i.e., operation

field) from the Malware Instruction Set (MIST) report that

were obtained by implementing the MIST conversion process

for all those runtime behavioral reports of malware produced

by cuckoo sandbox. Further, the extracted system calls are

used to generate the sequence of N-Grams of specified length

such as N=2, N=3, and N=4, and then, adopt the Information

Gain (IG) feature selection method to calculate a score for

each N-Gram. Later, the top N-Grams are selected based on

the highest IG score. The selected top N-Grams are processed

by the classifier for classification.

The rest of the paper is organized as follows. In Section

II, we study the background of MIST instruction and its

representation. In Section III, we review earlier research to

detect malicious executables. In Section IV, we describe our

proposed approach. In section V, experimental results are

discussed. Finally, conclusion is drawn in the Section VI.

II. BACKGROUND

The prime task of the malware detection system is to

identify known as well as unknown malware and defend the

integrity of the system, while performing its function. The

analysis of the malware can be performed in two ways i.e.,
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code analysis, and behavior analysis. The Code analysis is

generally achieved in a static way by obtaining a complete

overview of the software. A major limitation of the code

analysis technique is that it is often clogged by evasion

techniques such as binary packers, polymorphism, and anti-

debug techniques. In behavior analysis, the malware behavior

is monitored, while it is running on a host system. Behavior-

based malware analysis is an efficient way of observing the

actions of the malware, while several existing monitoring

tools provide the behavioral report [3]. Generally, behavioral-

based malware analysis tools execute a malware sample in an

isolated environment to obtain accurate system level behavior

by monitoring and recording the system calls invoked by the

malware. A summarized observed behavior of the malware

sample is tabulated in the analysis report. Monitoring suites

such as Anubis and CWSandbox produce the behavior report

in textual or XML-based format that provide system-level

behavior of the malware, that includes system calls details.

A human-analyst can easily analyze textual or XML-based

formats as they are unsuitable for further automatic analysis

due to a negative impact on the runtime of the analysis. XML

representations are inappropriate for finding generic behavioral

patterns. Unlike XML, textual representations are tough due to

aggregation and even increase the size of the report. In contrast

to textual and XML-based format, a MIST is used to record

all system level behavior in which the system call arguments

are organized in different levels of blocks (Fig. 1).

Fig. 1: MIST representation of system call.

The first field category denotes the type of system calls

and the second field operation represents a particular system

call. In each MIST instruction, the type of the argument

block and its size depends on the particular system call. The

MIST representation is an optimized form for an effective and

efficient way of analyzing the malware behavior using machine

learning algorithms [4].

III. RELATED WORK

There have been several dynamic malware sandbox ap-

proaches proposed in literature that perform dynamic malware

analysis using sandbox technology. Willems et al. [5] devel-

oped an open source tool called CWSandbox that allows a

malware sample to execute either in a native environment or

in a virtual Windows environment. Monitoring of the API calls

is accomplished by the hook functions of analysis component.

The DRAKVUF [6] is another dynamic malware analysis

system that performs insight trace analysis of execution of

malware, including modern stealthy kernel rootkit by inter-

cepting the kernel heap allocation of the targeted system. In

addition, DRAKVUF efficiently addresses the challenges in

the detecting the system call interception by other sandbox

systems [5]. On the other hand, virtualization-based sandbox

techniques [2] [7] play a vital role by examining the manip-

ulated structure of the operating system that is caused by the

types and behavior of new variants of malware.

Cuckoo [3] is another malware analysis system, which

provides a detailed behavior report of a Windows executable

file, when executed inside an isolated environment. Cuckoo

can analyze many different malicious files (executables, doc-

ument exploits, etc.) and malicious web-sites in a virtualized

environment. Cuckoo is able to trace the API calls and general

behavior of the input file and can easily integrate within the

existing framework. The current development of the sandbox

based system [8] [9] is sufficient in providing behavior activity

of input an executable file in the form of a behavioral report.

However, an accurate examination of the malware based on the

sandbox generated report involves extensive manual analysis.

In addition, the sandbox also provides a report for benign

executables files on the monitored machine. In such cases,

precisely detecting actual malware activities from other benign

executable applications is a challenging task. The sandbox

report is available in an unstructured form to precisely extract

actual semantic information (e.g, system call). Authors Rick

et al. [4] made an attempt to form an effective detection

of malware based on the invoked system call sequence. The

collected system call sequence structured in the form of N-

Grams and N-Gram feature extraction technique is widely used

for different input sources [10] [11] [12]. In another work,

Tesauro et al. [13] applied the idea of N-Grams as features

for malware detection. The N-Grams were selected from most

frequent classes in malware and benign files. The N-Grams

outperform when the experiment is carried with a larger feature

set. Recent reports have shown that feature selection based on

the IG has produced the best results in classifying malicious

executables files from benign executable files [10].

Machine learning algorithms are witnessed as a promising

technique to perform an accurate detection of malicious mal-

ware from benign executable files. Kolter et al. [14] describe

machine learning algorithm to classify the malicious executa-

bles that appear in the wild by encoding the N-Grams as

features for classification. Automated behavior-based malware

analysis framework using machine learning technique was

proposed [15] that convert the report generated by the sandbox

into MIST format to identify the unknown malware with

similar behavior.

In our work, we have used the cuckoo sandbox to gather the

system-level behavior of the executable files. The system calls’

sequence, triggered by the executable files (processes), are ex-

tracted from the cuckoo sandbox generated report. IG feature

selection technique is employed to choose the best features to

construct the Final Feature Vector (FFV). Machine learning

algorithm is employed to classify the malware executable files

from benign executables files based on the FFV.
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IV. PROPOSED WORK

Our proposed work distinguishes the malware files from

benign files on the basis of system calls’ sequence is structured

using a heuristic method called N-Grams analysis. It adopts

the IG technique to compute the IG score for the each N-

Gram and extracts the top N-Grams (features) based on the

highest IG score in order to prepare a FFV that is needed for

classification. Fig.2 depicts an overview architecture of the

proposed work.

Fig. 2: System Architecture of the proposed work.

A. Behavior analysis

Since, the cuckoo sandbox functions at hypervisor as a

separate entity, it examines the behavior of malware which

are running on VMs to obtain the behavioral analysis report

of running executables in JavaScript Object Notation (JSON)

format.

B. Conversion process

The analysis reports obtained in JSON format are pre-

processed to obtain the MIST, since it is a preferred format

that uses a smaller file size and reduces processing time. Since

our approach is specific to observation on monitored system

calls, we are concerned with the operation field (system call

as shown in Fig. 1) of MIST files to generate N-Grams (4

bytes) files as shown in Fig. 3.

Fig. 3: Snippet of N-Gram extraction using MIST file.

To generate the N-Gram files, we follow the following steps:

• System calls extraction,

• N-Gram generation,

• Sorting of N-Grams, and

• Duplicate removal

In first step system call extraction, we select only the

operation field, i.e., the system calls of all the benign MIST

files (1, 2, . . . .,10, 11, . . . . n) and all the malware

MIST files (1, 2, . . . .,10, 11, . . . . n) as shown in Fig.

4, Since we have the record of all system level behaviors.

The extracted operation fields are stored in a text file and

grouped in sequence to form N-Grams of variable length, i.e.,

N=2, N=3, N=4, etc. The lengthier the N-Grams size, better

characteristics are represented. A snippet of extraction is as

shown in Fig. 3. We have grouped N-Grams of length four

bytes, while forming the N-Grams in the second step of the

generation phase. In the third step, the formed N-Grams are

sorted in descending order to get the highest order sequence

of N-Grams. After the sorting operation in the fourth step,

the duplicates should be removed, if observed to get unique

N-Grams. The unique N-Grams can be employed for better

feature selection and also provide better classification.

(a) Steps to generate Benign N-Gram Files.

(b) Steps to generate Malware N-Gram Files.

Fig. 4: System call extraction phase.

The above explanation is prerequisite for the feature selec-

tion approach, since it cannot be performed without the N-

Gram formation. The formed Benign N-Gram files [B1, B2,

B3,. . . ,Bn] and Malware N-Gram files [M1, M2, M3, . .

.,Mn] must undergo union operation considering each benign

N-Gram files [B1 ∪ B2 ∪ B3 ∪ . . . ∪ Bn] and malware

N-Gram files [M1 ∪ M2 ∪ M3 ∪ . . . ∪ Mn]. After the

union operation, the benign union N-Gram files and malware

union N-Gram files must be sorted in non-increasing order

and duplicates must be removed, if observed to achieve unique

benign N-Gram files and unique malware N-Gram files. The

occurrences of each unique benign N-Gram in the benign N-

Gram files are observed and tabulated as N-Gram frequency

table for the benign class, and in the same way, the occurrences
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of each unique malware N-Gram in the malware N-Gram files

are observed and tabulated as N-Gram frequency table for the

malware class.

Fig. 5: N-Gram frequency table for benign class and malware

class with feature contingency table.

The feature contingency table is then prepared based on

the values accommodated in the N-Gram frequency table for

benign category and malware category as depicted in Fig. 5.

The feature contingency table is used to calculate Information

Gain [10]. Information Gain is computed by the following

equation,

IG(N −Gram) =
∑

vN−Gram∈{0,1}

∑

C∈{Ci}
P (vN−Gram, C)

log
P (vN−Gram, C)

P (vN−Gram), P (C)
(1)

Where, C is one of the two categories - benign or malware

and vN−Gram is the value of N-Gram. vN−Gram = 1 indicates

that the N-Gram present either in benign N-Gram files or mal-

ware N-Gram files and vN−Gram = 0, otherwise. P(vN−Gram,

C) is the proportion of N-Gram files in C in which the N-

Gram takes on value vN−Gram. P(vN−Gram) is the proportion

of benign N-Gram files or malware N-Gram files in entire

training set such that N-Gram takes the value vN−Gram . P(C)

is the proportion of data set belonging to category C. The N-

Grams are organized in non-increasing order based on the IG

score and the topmost L number of N-Grams are extracted as

best features for classification purpose.

C. Instruction Converter

The instruction converter converts the extracted features into

an ARFF (Attribute-Relation File Format) file. ARFF is an

ASCII text file that describes a list of instances sharing a set

of attributes. It is an important process because the classifiers

of WEKA tool used in our approach works with the ARFF

file.

V. EXPERIMENT RESULTS

Our experimental data consists of 3000 benign MIST files

and 3100 malware MIST files. The malware MIST files con-

sists of four different families such as Swizzor (1000), Basun

(1000), AutoIt (1000), and Kelihos Trojan (100). Among the

considered four different malware families the first three were

collected from the public source 1 and the remaining 100

malware MIST files were obtained by implementing the MIST

conversion process for all those runtime behavioral reports

produced by cuckoo sandbox by injecting the Kelihos Trojan.

As explained earlier, we extracted N-Grams of different sizes

2bytes, 3bytes and 4bytes to measure which N-Gram size

achieves the best detection rate. A separate experiment was

conducted for each N-Gram size.The N-Grams are sorted in

decreasing order based on the IG score and duplicate N-Gram

is removed, if found. The class-wise document frequency for

each class was determined for each N-Gram to prepare the

contingency table. The IG method is used to calculate a score

for each N-Gram and the top K N-Grams are determined

based on the highest IG score. Experiment were conducted

for different values of K such as 200, 400, and 600. Further,

the best features were drawn at each K value for different N-

Gram lengths. The best features were pre-processed through

the instruction converter to prepare ARFF files for the selected

N-Grams. The ARFF files were submitted to the WEKA tool

for classification. A wide set of experiments were conducted

to determine which classifier achieved best malware detection

rate with low False Positive Rate (FPR). We evaluated the

performance of several classification algorithms stated in the

WEKA tool.
Our objective was to know the best classification algorithm

among the several stated in the WEKA tool. From that per-

spective, we selected six classifiers among the eight different

categories mentioned in the WEKA tool. The six classifiers

chosen were the Bayesian-Logistic-Regression, SPegasos, IB1,

Bagging, Part and J48 classified under Bayes, functions, lazy,

meta, rules and trees of WEKA. For evaluation purposes, we

measured and tabulated the values of True Positive Rate (TPR),

False Positive Rate (FPR), Precision, Recall, F-measure, ROC

Area and Accuracy for all the chosen six classifiers as shown

in TABLE I and TABLE II.
Two experiments were carried out by us: In the first ex-

periment, we considered N-Gram of three bytes in order to

select the top N-Grams based on the highest score of IG. The

top N-Grams were selected in terms of 200, 400, and 600.

From the experimental observation, as shown in Fig. 6, the

highest accuracy was 89.77% for 200 N-Grams, 90.03% for

400 N-Grams, and 89.88% for 600 N-Grams yielded by the

SPegasos classifier (Fig. 6a). The highest TPR of 0.898 for 200

N-Grams, 0.9 for 400 N-Grams, and 0.899 for 600 N-Grams

was produced by the SPegasos classifier (Fig. 6b). The lowest

FPR of 0.102 for 200 N-Grams, 0.1 for 400 N-Grams, and

0.101 for 600 N-Grams was given by the SPegasos classifier

(Fig. 6c). Receiver Operating Characteristics (ROC) curves is

mainly used to compare the classification capability of the

different algorithms. Among the number of classifiers tested

in this work, it was observed that SPegasos classifier attained

the best results.
Similarly, in the second experiment, N-Gram of length

four bytes was analyzed, and the results for highest accuracy

1https://github.com/rieck/malheur/tree/master/data
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TABLE I: WEKA Classification results for N-Gram Length 3 bytes.

N-Gram Length= 3
Selected Top N-Grams = 200

N-Gram Length= 3
Selected Top N-Grams = 400

N-Gram Length= 3
Selected Top N-Grams = 600

Classifier C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6
0.894 0.902 0.881 0.912 0.899 0.896 0.882 0.894 0.874 0.903 0.877 0.886 0.882 0.904 0.874 0.908 0.888 0.874 B

TPR 0.895 0.887 0.885 0.88 0.886 0.899 0.906 0.899 0.882 0.885 0.9 0.915 0.91 0.89 0.882 0.885 0.881 0.923 M
0.894 0.894 0.883 0.896 0.893 0.898 0.894 0.896 0.878 0.894 0.889 0.9 0.896 0.897 0.878 0.897 0.885 0.899 W
0.105 0.113 0.115 0.12 0.114 0.101 0.094 0.101 0.118 0.115 0.1 0.085 0.09 0.11 0.118 0.115 0.119 0.077 B

FPR 0.106 0.098 0.119 0.088 0.101 0.104 0.118 0.106 0.126 0.097 0.123 0.114 0.118 0.096 0.126 0.092 0.112 0.126 M
0.106 0.106 0.117 0.104 0.108 0.102 0.106 0.104 0.122 0.106 0.112 0.1 0.104 0.103 0.122 0.103 0.115 0.101 W
0.895 0.888 0.885 0.884 0.888 0.899 0.903 0.898 0.881 0.887 0.897 0.912 0.908 0.891 0.881 0.888 0.882 0.919 B

Precision 0.894 0.9 0.881 0.909 0.897 0.897 0.885 0.894 0.875 0.901 0.88 0.889 0.885 0.903 0.875 0.906 0.887 0.88 M
0.894 0.894 0.883 0.897 0.893 0.898 0.894 0.896 0.878 0.894 0.889 0.901 0.896 0.897 0.878 0.897 0.885 0.9 W
0.894 0.902 0.881 0.912 0.899 0.896 0.882 0.894 0.874 0.903 0.877 0.886 0.882 0.904 0.874 0.908 0.888 0.874 B

Recall 0.895 0.887 0.885 0.88 0.886 0.899 0.906 0.899 0.882 0.885 0.9 0.915 0.91 0.89 0.882 0.885 0.881 0.923 M
0.894 0.894 0.883 0.896 0.893 0.898 0.894 0.896 0.878 0.894 0.889 0.9 0.896 0.897 0.878 0.897 0.885 0.899 W
0.894 0.895 0.883 0.898 0.893 0.898 0.893 0.896 0.878 0.895 0.887 0.899 0.894 0.898 0.877 0.898 0.885 0.896 B

F-measure 0.894 0.893 0.883 0.894 0.892 0.898 0.895 0.897 0.879 0.893 0.89 0.902 0.897 0.896 0.878 0.895 0.884 0.901 M
0.894 0.894 0.883 0.896 0.892 0.898 0.894 0.896 0.878 0.894 0.888 0.9 0.896 0.897 0.878 0.897 0.885 0.899 W
0.968 0.971 0.883 0.896 0.965 0.898 0.968 0.972 0.878 0.894 0.959 0.9 0.966 0.972 0.878 0.897 0.955 0.899 B

ROC Area 0.968 0.971 0.883 0.896 0.965 0.898 0.968 0.972 0.878 0.894 0.959 0.9 0.966 0.972 0.878 0.897 0.955 0.899 M
0.968 0.971 0.883 0.896 0.965 0.898 0.968 0.972 0.878 0.894 0.959 0.9 0.966 0.972 0.878 0.897 0.955 0.899 W

Accuracy (%) 89.43 89.42 88.30 89.62 89.25 89.77 89.40 89.63 87.82 89.40 88.85 90.03 89.60 89.68 87.78 89.67 88.47 89.88
TPR: True Positive Rate, FPR: False Positive Rate, C1: J48, C2: Bagging, C3: Ib1, C4: Bayesian Logistic Regression, C5: Part, C6: Spegasos,

B: Benign, M: Malware, W: Weighted Average

TABLE II: WEKA Classification results for N-Gram Length 4 bytes.

N-Gram Length = 4
Selected Top N-Grams = 200

N-Gram Length = 4
Selected Top N-Grams = 400

N-Gram Length = 4
Selected Top N-Grams = 600

Classifier C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6
0.899 0.902 0.88 0.9 0.899 0.921 0.879 0.904 0.881 0.904 0.885 0.9 0.881 0.907 0.881 0.903 0.88 0.894 B

TPR 0.885 0.885 0.878 0.878 0.887 0.88 0.907 0.887 0.873 0.878 0.9 0.891 0.904 0.887 0.882 0.877 0.887 0.905 M
0.892 0.894 0.879 0.889 0.893 0.9 0.893 0.896 0.877 0.891 0.893 0.896 0.893 0.897 0.882 0.89 0.884 0.9 W
0.115 0.115 0.122 0.122 0.113 0.12 0.093 0.113 0.127 0.122 0.1 0.109 0.096 0.113 0.118 0.123 0.113 0.095 B

FPR 0.101 0.098 0.12 0.1 0.101 0.079 0.121 0.096 0.119 0.096 0.115 0.1 0.119 0.093 0.119 0.097 0.12 0.106 M
0.108 0.106 0.121 0.111 0.107 0.1 0.107 0.104 0.123 0.109 0.108 0.104 0.108 0.103 0.118 0.11 0.117 0.101 W
0.886 0.884 0.879 0.881 0.889 0.887 0.904 0.889 0.874 0.881 0.898 0.892 0.901 0.889 0.882 0.88 0.886 0.904 B

Precision 0.898 0.918 0.88 0.898 0.898 0.9 0.882 0.902 0.88 0.902 0.887 0.899 0.884 0.905 0.881 0.9 0.881 0.895 M
0.892 0.901 0.879 0.889 0.893 0.894 0.893 0.896 0.877 0.891 0.893 0.896 0.893 0.897 0.882 0.89 0.884 0.9 W
0.899 0.921 0.88 0.9 0.899 0.902 0.879 0.904 0.881 0.904 0.885 0.9 0.881 0.907 0.881 0.903 0.88 0.894 B

Recall 0.885 0.88 0.878 0.878 0.887 0.885 0.907 0.887 0.873 0.878 0.9 0.891 0.904 0.887 0.882 0.877 0.887 0.905 M
0.892 0.9 0.879 0.889 0.893 0.894 0.893 0.896 0.877 0.891 0.893 0.896 0.893 0.897 0.882 0.89 0.884 0.9 W
0.893 0.902 0.879 0.89 0.894 0.895 0.891 0.897 0.877 0.892 0.892 0.896 0.891 0.898 0.882 0.891 0.883 0.899 B

F-measure 0.891 0.898 0.879 0.888 0.892 0.893 0.894 0.895 0.877 0.89 0.893 0.895 0.894 0.896 0.882 0.888 0.884 0.9 M
0.892 0.9 0.879 0.889 0.893 0.894 0.893 0.896 0.877 0.891 0.892 0.896 0.892 0.897 0.882 0.89 0.883 0.899 W
0.964 0.97 0.879 0.889 0.964 0.894 0.964 0.972 0.877 0.891 0.963 0.896 0.965 0.972 0.882 0.89 0.956 0.9 B

ROC Area 0.964 0.97 0.879 0.889 0.964 0.894 0.964 0.972 0.877 0.891 0.963 0.896 0.965 0.972 0.882 0.89 0.956 0.9 M
0.964 0.97 0.879 0.889 0.964 0.894 0.964 0.972 0.877 0.891 0.963 0.896 0.965 0.972 0.882 0.89 0.956 0.9 W

Accuracy (%) 89.20 89.37 87.93 88.92 89.30 90.03 89.27 89.57 87.7 89.1 89.25 89.57 89.20 89.68 88.17 88.97 88.35 89.95
TPR: True Positive Rate, FPR: False Positive Rate, C1: J48, C2: Bagging, C3: Ib1, C4: Bayesian Logistic Regression, C5: Part, C6: Spegasos,

B: Benign, M: Malware, W: Weighted Average

were 90.03% for 200 N-Grams, 89.57% for 400 N-Grams,

and 89.95% for 600 N-Grams with respect to the SPegasos

classifier (Fig. 7a). The highest TPR was 0.9 for 200 N-Grams,

0.896 for 400 N-Grams, and 0.9 for 600 N-Grams obtained by

the SPegasos classifier (Fig. 7b). The lowest FPR was 0.1 for

200 N-Grams, 0.104 for 400 N-Grams, and 0.101 for 600 N-

Grams produced by the SPegasos classifier (Fig. 7c). From the

visual inspection of Fig. 6 and Fig. 7, we can conclude that

SPegasos classifier turned out to be best and ensured better

classification for both N-Gram lengths three and four.
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(a) Accuracy. (b) TPR. (c) FPR. (d) ROC Area.

Fig. 6: Graphical representation considering evaluation measures such as (a) Accuracy, (b) True Positive Rate, (c) False Positive

Rate and (d) ROC area. When N-Gram length is three bytes.

(a) Accuracy. (b) TPR. (c) FPR. (d) ROC Area.

Fig. 7: Graphical representation considering evaluation measures such as (a) Accuracy, (b) True Positive Rate, (c) False Positive

Rate and (d) ROC area. When N-Gram length is four bytes.

VI. CONCLUSION

In order to detect the malicious activities of the malware,

behavior analysis of the executable file (process) such as

system calls invoked by the input file during execution have

been employed. The gathered system calls’ sequence chunked

into N-Gram and each N-Gram treated as a feature. The IG

feature selection method was used to choose the best features

based on highest IG score, and the selected features were used

to prepare FFV needed by the classifier. The experiments were

performed using different classifiers available in the WEKA

tool. From the experimental observations, it was found that

the better classifier among the chosen six classifiers in this

experimental work is the SPegasos since it achieved highest

accuracy, highest TPR, and lowest FPR compared to the

others. SPegasos achieved better detection rate for different

feature lengths of 200, 400, and 600. Our future work will

aim to develop a multiprocessing model able to compute IG

scores for larger N-Gram datasets.
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